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\ Abstract
{ »

' "dAn imaging system's object field to image field trans-

formation operation is usually described in the (spatial)
frequency domain using the system's transfer function. The
| limitation of this description is that the imaging system
must be space-invariant. In contrast, an object field to
image field transformation can be described in the spatial
domain without requiring that the system be space-invariant.

For the frequency domain, a summary of free-space and
turbulent transfer functions is presented. For the spatial
domain, the Normal !ode Approach to imaging is described
followed by a summary of spatial eigenvalue distributions
and degrees of freedom expressions. The effect of additive
F background noise on the useable degrees of freedom of an
image field is studied. The spatial domain and frequency
domain are shown to be related when certain conditions are
satisfied, one of which is space-invariance.

The operation of two ideal, adaptive imaging receivers
(the Channel-Matched Filter and Multiplicative-Phase Receivers)
is described and their imaging performance is compared using
turbulent coherent transfer functions and minimum average

integrated mean square error expressions.Aﬁ
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I Introduction

Background

Imaging systems are typically composed of a channel
through which an object field is propagated and a receiver at
the channel output for imaging the object field. The manner
in which these systems transform an object field into an im-
age field is ‘commonly described in the (spatial) frequency
domain by using transfer functions. A transfer function indi-
cates how the Fourier (sinusoidal) components of an object
field are transformed into the corresponding components of
an image field. If an object field is spatially coherent the
function is called a Coherent Transfer Function (CTF). If an
object field is spatially incoherent the function is called
an Optical Transfer Function (OTF) and its modulus is called
the Modulation Transfer Function (Ref 7:114).

In the frequency domain, the resolution capability of an
imaging system is sometimes defined in terms of the highest
nonzero spatial frequency (spatial frequency cutoff) of a
CTF or MTF., The higher the spatial frequency cutoff the
greater the resolution capability of an imaging system. For
propagation of an object field through free-space the spatial
frequency cutoff is due to the diffraction effects of the
finite apertures of an imaging receiver. The free-space cut-
off is the highest resolution attainable by an imaging sys-
tem,

when the lack of space-invariance in an imaging system

1




prevents the use of transfer functions, 1t is useful to be
able to describe imaging in another domain called the spatial
| domain. In the spatial domain, an object field to image field

transformation is described in terms of object field and image
, field spatial modes and spatial eigenvalues. A spatial eigen-
value indicates the power loss associated with a single object
field spatial mode to image field spatial mode transformation.
When the spatial eigenvalues are ordered in magnitude (highest
to lowest), they form a distribution that characterizes the
modal transformation of an imaging system,

In the spatialvdomain, the resolution capability of an
imaging system is usually defined as the number of nonzero
eigenvalues in the spatial eigenvalue distribution. This num-
‘ ber is called the degrees of freedom (DOF) of an image field.
The greater the number of DOF of an image field, the greater
is the resolution capability of an imaging system. The DOF
of an image field depend on the geometry of an imaging system,
the wavelength of the propagated object field and the propaga-
tion medium.

Another spatial domain resolution measure is the inte-
grated mean square error (IMSE) of the image field. The error
is the difference between the image field produced for. free-
space propagation and either the image field produced for

propagation in other media or for additive background noise.

The IMSE of the image field is expressible in terms of the

LR




‘ DOF of the image field.

[ Objectives

| This thesis has three objectives. The first objective is
to describe the Normal lode Approach to spatial domain imag-
ing and to present spatial eigenvalue distributions and DOF

‘ expressions associated with that approach. The second objec-
tive is to show how, and under what conditions, the spatial
domain is related to the frequency domain. The third objec-
tive is to compare two ideal adaptive imaging receivers using
their turbulent CTFs and the minimum average IMSEs of the image
fields they generate. The receivers, to be described later,
are the Channel-Matched Filter (CHMF) Receiver and the

Multiplicative-Phase (MP) Receiver.

Organization '

Chapter II is a summary of the CTFs and MTFs for an ob-
Ject field propagated through either free-space or the turbu-
lent atmosphere,

Chapter III is a description of the Normal Mode Approach
to spatial domain imaging, a summary of spatial eigenvalue
distributions and DOF expressions, and an examination of the
effect additive background noise has on the useable DOF of an
image field. In addition, Chapter III shows how the spatial
domain and the frequency domain are related.

Chapter IV 1is a description of the CHMF and MP Receivers

( 3




VAR P

and a derivation of turbulent CTFs and image field, minimum
average IMSE expressions for both receivers. This chapter

is also a comparison of the resolution capabilities of the

receivers.

Chapter V is a summary of conclusions and a discussion

of areas requiring further study.
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l
i II Frequency Domain Imaging-Transfer Functions

The purpose of this chapter is to present, as background
material, the coherent transfer functions (CTFs) and modula-
tion transfer functions (MTFs) of an object field propagated
through either free-space or the turbulent atmosphere. The
first section of this chapter defines the imaging system
geometry used: in calculating the CTFs and MTFs., The next
section is a summary of free-space CTFs and MTFs, and corre-
sponding spatial frequency cutoffs, for the defined geometry.

The final section is a summary of turbulent CTFs and MTFs.

General
Figure 1 shows an imaging system composed of an object
field plane Pl’ receiving plane P2,and an image field plane

P P, has a circular aperture R2 of diameter d_,. The region

3° 2 2

between P1 and P2 is called the propagation channel. The

channel may be either free-space or the turbulent atmosphere.

The region between P, and P, is the imaging receiver, This

2 3
region could include optical elements but for simplicity it is
assumed to be a free-space channel without such elements.

The receiving plane P, is therefore both the input to the

2
receiver and the output of the propagation channel. The imag-
ing system of Figure 1 is assumed to be linear and space in-
variant. This assumption must be made if transfer functions

are to be used to characterize the object field to image field

transformation of the imaging system (Ref 7:19).

“d\u" < A
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RECEIVING PLANE P2

PROPAGATION RECEIVER -
CHANNEL K I/ I'3

a3 ds ~Selet— dy >

OBJECT FIELD PLANE P1

IMAGE FIELD PLANE P3

Figure 1 -~ Geometry for Calculation of Transfer Functions

Free-Space

Assume that the propagation channel of Figure 1 is free-
space., Associated with the circular receiving aperture R2

of Figure 1 is a free-space pupil function called P(Fe):

P(Fa) = circ(lezl/de) (1)

where
1 ; x=<1/2
cire(x) =
0 ; otherwise (2)

{
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Goodman has shown (Ref 7:111) that for a coherent object

field in P,, the free-space CTF, called ), is

zb-COH(

To—con'd) = P(AG |E]) (3)

where )\is the optical wavelength of the object field, di is
the length of the propagation channel, and If, is a spatial

frequency magnitude., Combining Eqs (1) and (3) yields
To—coy(E) = cire(2 )\dilfl/dz) : (4)

From Eq (4), the CTF spatial frequency cutoff, called

Ifol’ is
,?ol = dy/2hdg (5)

Goodman has shown (Ref 7:116) that for an incoherent ob-

ject field in P the free-space MTF, called tb(f), is the

1’
convolution of the pupil function of Eq (1) with itself.

Completing this convolution yields

2 [cos'l()\di|§|/d2) - (Aa;|E]7ay

To(D =Jx ‘\[1 - (Na |E|/a,)? ]/11' ;N |F| sS4,

0 ; otherwise (6)

g
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From Eq (6), the !TF spatial frequency cutoff, called
ITCI, is

|7.] = 4,/ X q, (7)
A comparison of Eqs (5) and (7) indicates that the spa-
tial frequency cutoff for an incoherent object field is twice
the cutoff for a coherent object field. This does not imply,
however, that incoherent object fields yield "better" image
fields than coherent object fields. As Goodman points out
(Ref 7:125), the two cutoff frequencies describe resolution
for different image quantities and are therefore not compa-
rable. Equation (5) is the spatial frequency cutoff for a
function which produces an image field amplitude distribution

while Eq (7) is the cutoff for a function which produces an

image field intensity distribution (power density).

Turbulent Atmosphere

Assume now that the propagation channel of Figure 1 is
the turbulent atmosphere. An object field propagating through
the turbulent atmosphere is effected by multiplicative log-
amplitude, X(?z,?'l) and phase, (D(?z,?l), fluctuations.
X(r,,r;) and @(?2,?1) are Gaussian random variables
(Ref 17:209). Their first and second order statistics are
given in Appendix A. Since X(FZ,FI) and ¢(52,51) are in
general functions of both the object field plane and the re-

ceiving plane, they violate the space invariance required

8
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for obtaining transfer functions. There is a condition, how-
ever, under which X(?2,Fl) and d)(?z,f‘l) can be expressed as
functions of only the receiving plane so as not to violate
the space invariance of the imaging system, The condition is
that the maximum spatial extent of an object field in P, of

1

Figure 1 be less than an atmospheric coherence length r,
(Ref 15:462). ror a spherical-wave object field, r, is de-

fined as (Ref 8:550)
-3

S

do 5

r, = d,[0.423 keJCN2(z)zs dz (8)
where k = 2TT/\ is the wave number of the object field, dg
is the length of the propagation channel, and CNZ(z) is the
refractive~index structure parameter of the turbulent atmos-
phere (Ref 9:1526). For )\= 0.554 and a vertical propaga-
tion path, r, is approximately 11 cm (Ref 5:2622), When the
object field meets the above condition it is said to lie with-
in an isoplanatic patech. Since most object fields are spa-
tially larger than an isoplanatic patch, isoplanatism is a
severe (but necessary) restriction for obtaining a turbulent
CTF.

When isoplanatism is a valid assumption, there 1is asso-
ciated with the circular receiving aperture R2 of Figure 1

a "turbulent" pupil function called ?(?2):

B(F,) = P(Fylexp [X(|F,]) + 3 (|F,))) (9)

9




where P(Fz) is defined by Eq (1). Goodman has shown
(Ref 7:121) that for a coherent object field in P

the turbulent CTF, called tEOH(?), is
Toou(E) = PCAG; [E)) (10)
Combining Eqs (3), (9) and (10) yields

Toou(® = To_gonPexo[X(Na [T + 30(Na|E))]

(11)

The ensz2mble average of Eq (11) with respect to the

random variables X()\di]f‘l) and ¢()\di|f|) is
< Toou (D> = To_gon() <exo [X(Aa, |E])
+ 30N |ED]> (12)

It is shown in Appendix A that Eq (12) is equivalent to

= 2
<'CCOH(?) > = 'EO_COH(f)exp[—v' /2] (13)
2 2 2 2 2 .
where v = v; + va , and v; and va are the variances

of X(Fz) and ¢(52) respectively., Following Fried's example
(Ref 4:1375), the exponential in Eq (13) can be thought of as

an atmospheric CTF, called ‘EA_COH(?). Equation (13) is then

10

1 of Figure 1
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<T B> = T, (%) (14)

COH (2) Ty,

-COH -COH

For a spherical wave, Greenwood has indicated (Ref 8:550)

that vrz of Eq (13) is

5
2 3
< = 4,93 (Lo/ro) (15)

where r is the atmospheric coherence length defined by Eq (8)
and Lo is the outer scale of the turbulent atmosphere, A
typical value for Lo is 100 meters or one-fifth the height
above the ground, whichever is less (Ref 9:1527). Substitut-

ing Eq (15) into Eq (13) gives

5
< Tpou(f)> = ‘L‘O_COH(f)exp[-z.47(Lo/ro)3 ] (16)
Since the exponential in Eq (16) is not spatial frequency
dependent, the spatial frequency cutoff of the turbulent
CTF is the same as the spatial frequency cutoff of the free-
space CTF, However, the amplitude of the turbulent CTF is,
for all spatial frequencies, smaller than the amplitude of

the free-space CTF since Lb is larger than r_. The amplitude .

o
attenuation is usually due to turbulence-induced phase fluc-
tuations rather than to log-amplitude fluctuations since vga
is usually much larger than v;z (Ref 8:550).

In reference 4, Fried has derived expressions for long

and shoft-exposure turbulent MTFs. Long-exposure means that

11




the object field propagated through the turbulent atmosphere
is viewed over a long enough time such that the turbulent MTF
is equal to its ensemble average. Short-exposure means that
the propagated object field is not wviewed long enough to
Justify equating the turbulent HTF to its ensemble average.
For short exposures, Fried has considered both near-field and
far-field object fields. With reference to Figure 1, near-
field means d, >> VdOX while far-field means d, << Vdo)\ .
Only the near-field case is presented here.

Fried's ensemble-average, long-exposure, turbulent lTF,

called <'ELE(?)>, is
o
<'CLE('f‘)> = fo(f‘)exp[3.44(Xdilf‘,/ro)3 ] (17)

where di is defined in Fizure 1 and r, is defined by Eq (8).
The average of Eq (i7) is an average over many different expo-
sures, Although the exponential in Eq (17) is similar in
form to the exponential in Eq (16), their effects are differ-
ent. In Eq (16) the exponential represents a constant ampli-
tude attenuation for all spatial frequencies while in Eq (17)
the exponential is a spatial frequency dependent attenuation.
Fried's ensemble-average, near-field, short-exposure,
turbulent HTF, called < . T ..(F)>, is

-

<5 Tee(B)> = To(Brexs 3.4a(\q,|7|/r )

12

[ .




1
x [1 - ()\dilfl/dz)z ] (18)

where d2 is the diameter of the circular receiving aperture
of Figure 1. An examination of Eq (18) indicates that

<ur TSE(?)> approaches the free-space MTF, T (%), as [#]
approaches d2//\ d;. From Eq (7), da/)\ d; is the spatial fre-
quency cutoff of the free-space MTF.

All of the CTF and MTF expressions in this chapter are
based on the assumption that the imaging system of Figure 1 /
is linear and space-invariant. When space-invariance is not
a valid assumption, CTF and MTF expressions are meaningless.
The loss of these expressions makes a frequency domain de-
scription of an object field to image field transformation

‘ very difficult, Fortunately this transformation can be de-
scribed in a different domain without having to assume space-
invariance. The other domain is called the spatial domain

and it is the subject of the next chapter.

13




IIT Spatial Domain Imaging

This chapter has four purposes. The first purpose is
to explain the Normal lMode Approach to spatial domain imag-
ing. The second is to present spatial eigenvalue distribu-
tions for propagation of coherent or incoherent object fields
through either free-space or the turbulent atmosphere and to
give expressions for the degrees of freedom (DOF) of the re-
sulting image fields. The third purpose is to determine the
effect additive background noise has on the DOF of an image
field. The final purpose is to show how, and under what con-
ditions, the spatial domain is related to the frequency domain.
The sections of this chapter are arranged in the same order

as the purposes above.

Ilormal lMode Approach

Figure 2 shows the imaging system geometry to be used in
explaining the Normal Mode Approach to spatial domain imaging.

P, is an object field plane and P, is an image field plane.

1 2
The region between P1 and P2 is called the propagat;on chan-
nel, Therefore, P2 is not only an image field plane but also
the output plane of the propagation channel. In later sec-
tions of this chapter the channel is either free-space or
the turbulent atmosphere, but for now it is a general channel
with a general impulse response called h21(52,31). The pur-

pose of aperture R1 of Figure 2 is to define the spatial ex-

tent of the object field as it enters the propagation channel.

14 :




Aperture R, serves the same purpose for the image field at

2
the output of the propagation channel. In this section, the
shapes of Rl and R2 are arbitrary but in later sections they
are slit or circular apertures. Since in the Normal Mode
Approach the spatial extents of object and image fields are
defined in their respective planes, a receiving plane and a
receiving aperture are not required in Figure 2 as they are

in Figure 1. The imaging system of Figure 2 is linear but

not necessarily space-invariant,

IMAGE FIELD PLANE Pz-————;27

ha

PROPAGATION CHANNEL

N

OBJECT FIELD PLANE P1

Figure 2 -~ Geometry for Normal Mode Imaging

In the Normal Mode Approach an object field EI(FI) in Ry
of Figure 2 is expressed as a weighted sum of a complete ortho-

( normal (CON) set of spatial eigenfunctions (spatial modes) as ;

1s




shovn below:
o0
Eg(F) = ) a, O, (F) (19)
i=1

where the ®i(;1) are a CON set of spatial eigenfunctions
defined in R1 and the . object field weighting coeffi-

clents defined by

a, = !51(51) (pi*(f'l)d'f'l (20)
1

Likewise, an image field EO(FZ) in R, of Figure 2 is ex-

2
pressed as a weighted sum of a CON set of spatial eigenfunc-

tions (spatial modes) as shown below:
XN
Eo(rp) = Zbi 1(rp) (21)
i=1

where the \Pi(;2) are a CON set of spatial eigenfunctions de-
fined in R2 and the bi are image field weighting coefficients

defined by

- * o -
by = }_[Eo(rz) ¥, (¥,)dF, (22)
2
In addition to Eq (21), the image field is expressed in
terms of the object field and the general impulse response of
the propagation channel by using the Huygens-Fresnel Principle

(Ref 2:Chap 6):
16
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E (T,) = E,{[EI(Fl)hel(}'-a,,'f-l)cu'-l (23)
1

The Normal lMode Approach describes an object field to
image field transformation by describing how much of the
power of each of the spatial modes of the object field is
transmitted through the propagation channel to the corre-~
sponding modes of the image field. On a per mode basis the
fraction of power transmitted is given by the ratio of

lbi|2 to Iai|2° This ratio is defined as
|03/ |as|® = A (24)

where )\i is called the ith power spatial eigenvalue of the

propagation channel. In the remainder of this thesis )\i is
referred to as simply the ith spatial eigenvalue. The square
root of the ith spatial eigenvalue is related to the ith spa-
tial modes of the object and image fields, and_to the general

impulse response of the propagation channel, by
‘\/)\i ¥, (7, = f¢i(§1)h21(?2,f'1)d?1 (25)
R
1

Equation (25) is derived in Appendix B. In Appendix B

it is shown that one way Eq (25) is satisfied is for

>‘1 ¢1(z'~') = Jx(?l'.Fl) 01(}'1)&1 ; T,'€R,  (26)
1
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where

- - - - * - - - -
K(rl',rl) = ﬁ[hzl(re’rl)hzl (rz,r‘l')dr'2 : rl'e‘.Rl

2 (27)

In Eqs (26) and (27), K(Fl',?l) is called an imaging
kernel. Equation (268) is called a Fredholm Equation. For
free-space propagation, Slepian and Pollack have shown
(Ref 16:57) that the spatial eigenfunctions tDi(Fl) that
satisfy Eq (26) are called prolate spheroidal wavefunctions,
Using these wavefunctions, Eq (26) can be solved for free-
space spatial eigenvalues, The eigenvalues can be ordered
such that )\i = >\i+1 . The ordered spatial eigenvalues
form a distribution that characi:rizes the modal transforma-
tion of an imaging system. The number of nonzero spatial
eigenvalues in the spatial eigenvalue distribution is called
the degrees of freedom (DOF) of an image field., The greater
the number of DOF of an image field, the greater is the reso-
lution capability of an imaging system.

For propagation through the turbulent atmosphere, the
imaging kernel and spatial eigenfunctions are random varia-
bles. Since the spatial eigenfunctions @i(il) that satisfy
Eq (26) are not known, Eq (26) cannot be solved for turbulence
spatial eigenvalues. Therefore, turbulence spatial eigen-
values are also random variables, Shapiro has shown
(Ref 13:2616), however, that turbulence spatial eigenvalues

exhibit the same near-field and far-field distribution

18




behavior as free-space spatial eigenvalues. Spatial eigen-
value distributions for free-space and the turbulent atmos-

phere are presented in the next section.

Eigenvalue Distributions

Free-Space - The first free-sapce, spatial eigenvalue
distribution presented is that for a circularly-apertured,
coherent object field and a circularly-apertured image field.
Circu}arly—apertured means that the object and image fields
are spatially limited to circular regions. Specifically,
this means that the object field aperture R1 of Figure 2 and
the image field aperture R2 of Figure 2 are circular aper-

tures of diameters d1 and d, respectively.

2
l The second free-space, spatial eigenvalue distribution

| presented should be that for a circularly-apertured, incoher-
ent object field and a circularly-apertured image field. Un-
fortunately, this case is not only not found in the literature
but it is also difficult to derive., Therefore, the second
free-space spatial éigenvalue distribution presented is that
for ajf one-dimensional, incoherent object field and a one-
dimensional image field. One-dimensional means that aper-

and R

tures R 5 of Figure 2 are slit apertures of widths d

1

and d2 respectively,

The final free-space spatial eigenvalue distribution

1

presented is that for a one-dimensional, coherent object field

and a one-dimensional image field, This type of coherent
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object field is considered in addition to the circularly-
apertured, coherent object field because its spatial eigen-
value distribution is used in the last two sections of this
chapter. In all the distributions presented, the spatial
eigenvalues are ordered such that }\i'>">\i+1 . f
For the case of a circularly-apertured, coherent object
field, Shapiro has shown (Ref 13:2615) that the near-field,
free-space, spatial eigenvalues exhibit the following rectan- ﬂ

gular behavior:

)\ 1 i..<_Dfo i21 , i€ integers
i -
0 5 1>Dg (28)
where
2
D, = (TTd;d,/4Nz2) (29)

The near-field qualification of Eq (28) means that
Dfo >> 1. For a near-field, circularly-apertured, coherent

object field (of diameter dl) propagated a distance z through

free-space, Dfo is called the number of DOF of the resulting
circularly-apertured image field (of diameter d2). If the
object field is in the far-field (Df°‘<< 1), then there is

only one spatial eigenvalue and its value is D In addi-

fo*
tion, the image field of a far-field object field has only ‘
one DOF, This would be the case for a point source.

Equation (29) is derived by combining Eqs (26) and (28),

as is shown in Appendix C. Alternatively, Eq (29) can be
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derived using the Sampling Theorem, The Sampling Theorem

says (Ref 6:93) that the number of DOF of an image field is
obtained by dividing the solid angle subtended by the object
field aperture Rl (when viewed from the image field aperture
Rg) by the diffraction limited field of view of the image

field aperture R2. The Sampling Theorem derivation of Zg (29) i
is shovn in Appendix D. ‘

The spatial eigenvalue behavior given by Eq (28) is

illustrated by the distribution of Figure 3,

XiA
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Figure 3 - Spatial Eigenvalue Distribution for Near-Field,
Circularly-Apertured, Coherent Object Field

Propagated through Free~Space

For the case of a one-dimensional, incoherent object
field, Bendinelli, et. al. have shown (Ref 1:1500) that the

near-field, free-space, spatlal eigenvalues exhibit the {

21




following triangular behavior:

1 - (1/Dfo')i H iSDfo' i=21 , 1€ integers
A, -
« 3 ]
0 ; 1>Dfo (30) ‘
where
Dy = ld2/>\z (31) .

The near-field qualification of Eq (30) means that
Dfo' >> 1. For a near-field, one-dimensional, incoherent
object field (of width dl) propagated a distance z through
free-space, Dfo' is called the number of DOF of the resulting
one-dimensional image field (of width d2). If the object
field is in the far field (Dfo'<3< 1), then there is only
one spatial eigenvalue and one DOF of the image field; How—
ever, Bendinelli, et, al., have not shown that the value of
the one spatial eigenvalue is Dfo"

The spatial eigenvalue behavior given by Eq (30) is
illustrated by the distribution of Figure 4,

For the case of a one-dimensional, coherent object field,

the near-field, free-space, spatial eigenvalues exhibit the

following rectangular behavior (Ref 18:801):

1 1$Dfo'/2 i=21 , 1i€integers

A, -

1
( 0 ; 1>0.'/2 (32)
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wvhere

Dpo'/2 = d1d2/2>\z (33)

)\i# i

1,

[\V i S —
W e com

Figure 4 - Spatial Eigenvalue Distribution for Near-Field,
One-Dimensional, Incoherent Object Field

Propagated through Free-Space

The near-field_qualification of Eq (32) means that
Dfo’/z >> 1, For a near-field, one-dimensional, cohéerent
object field (of width d,) propagated a distance z through
free=-space, Dfo'/z is called the number of DOF of the result-
ing one-dimensional image field (of width d2). If the object
field is in the far-field (Dfo'/z << 1), then there is only
one spatial eigenvalue and one DOF of the image field. d

The spatial eigenvalue behavior given by Eq (32) is il-

lustrated by the distribution of Figure 5.
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Figure 5 - Spatial Eigenvalue Distribution for iear-Field,
One-Dimensional, Coherent Object Field

Propagated through Free-Space

Turbulent Atmosphere - A turbulence spatial eigenvalue

distribution is presented for a circularly-apertured, coher-
ent object field and a circularly-apertured image field.
Distributions are not presented for a circularly-apertured
incoherent object field nor for a one-dimensional incoherent
object field, as neither case is found in the literature nor
can they be easily derived.

For the case of a c¢ircularly-apertured, coherent object
field, Shapiro has shown (Ref 13:2616) that the near-field
(Dfo >> 1), turbulence spatial eigenvalues are random varia-
bles that exhibit with high probablility the following rectan-

gular behavior:
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1 ; 1%D, i21 , i€integers

(34)

4

wvhere

D, = (1/)\2)2ffexp[2 X(EQ,EI)]dPZ d?l (35)
R R,

For a near-field, circularly-apertured, coherent object
field (of diameter dl) propagzated a distance z through the
turbulent atmosphere, Df is called the number of DOF of the
resulting circularly-apertured image field (of diameter d2).
In Eq (35), )((52,51) represents the random log-amplitude
fluctuations of the turbulent atmosphere. Since )((52,51)

is a random variable, both D_. and the number of DOF are ran-

£
dom variables, If the object field is in the far-field
(Dfo << 1), then there is only one spatial eigenvalue and its
value is Df. Equation (35) is derived by combining Egs (5C)
and (32), as is shown in Appendix E. When )((?2,51) =0 ,
as in free-space, Eq (35) reduces to Eq (29). The spatial
eigenvalue behavior given by Eq (34) is the same as the be-

havior illustrated in Figure 3, but with D replaced by D

fo £
Energy conservation requires that the mean of )((?2,51)
equal the negative of the variance of )((?2,?1) (Ref 4:1374),
In Appendix F it is shown that this requirement means that
<=Df:> = Dfo . Since the number of DOF of an image field

1s a measure of the resolution capability of a spatial domain
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imaging system, the statement <:Df > = Dfo says that on
the averagze the imaging system has the same resolution capa~

bility for the turbulent atmosphere as it does for free-space.

Additive Background lloise

This section analyzes the effect additive background
noise has on the useable DOF of an image field when the ob-
ject field is in the near-field, is one-dimensional and is
propagated through free-space. In the analysis, apertures
R, and R

1 2 1

d2 respectively. Both coherent and incoherent object fields

are considered. The analysis is not extended, however, to

of Figure 2 are slit apertures of widths d, and

circularly-apertured object fields nor to object fields prop-
agated through the turbulent atmosphere,.

The analysis follows the example of Bendinelli, et, al.,
(Ref 1:1499), and begins by calculating the average IMSE of
the image field generated when background noise is present

in the image field plane P, of Figure 2. The background noise

2
is zero-mean, spatially white noise. The average IMSE of the

image field is

< IMSE(N)> = f< [EO(EZ) - Eo'(Fz)]2>d?2 (36)
R
2
where
E (F,) = i);lbi\l‘i(Fa) (21)
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and where

N
EN(E,) = ) (b; +ny) P (F,) (37)
i=1

Eo(?z) is the image field generated in the absence of
background noise while Eo'(?z) is an estimate of the image
field generated when background noise is present. The number
N in Eq (27) is chosen such that the average IIISE of the im-
age field is minimized. This is the reason N appears as an y
argument in Eq (36). The n; in Eq (37) are the random noise
coefficients of the zero-mean, spatially white noise. The
average of Eq (36) is with respect to these random noise

coefficients. In Appendix G it is shown that Eq (36) is

equivalent to
oo N
<INSE (N) > = Z)\ilai|2 - Z(Xi!ailz —v,‘z) (38)
i=1 i=1

where the a; are object field weighting coefficients and qnf
is the variance of the background noise.

The next step in the analysis is to minimize the average
IMSE given by Eq (38). In general, the object field weight-
ing coefficients are unordered., Therefore, in general all
that can be said is that the second summation of Eq (38) must
be positive for the average IMSE to be minimized. However,
if the object field weighting coefficients are ordered such
that a, > a;,; » then the average INSE is minimized by
choosing an N that maximizes the second summation of Eq (38).
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The second summation cannot be maximized by simply letting I
g0 to infinity because of the ordering of the spatial eigen-
values (Aik )‘i+l) and the ordering of the object field

weighting coefficients (ai 2 a ) . As N becomes too

i+l
large, Aiiailz becomes less than vqﬁ and the second summa-
tion begins to decrease rather than increase. Therefore,

the N that maximizes the second summation of Eq (38) is the
N that causes the term in the summation to equal zero or it
is the largest N that insures the term remains a positive
quantity. The latter qualification is necessary because

the spatial eigenvalues and object field weighting coeffi-
cients assume discrete values that will not always permit an
N to be chosen such that the term in the second summation of
Eq (38) is exactly zero. Theref;re, the N that minimizes the

average IISE given by Eq (38) is the largest N that satisfies

the equation

‘>\1=Nl'>"vqa/,ai=Nl : (39)

Note that Eq (39) is equivalent to lbi=Nl2;=‘n$ where

the term lb is the power of Nth spatial mode of the

2
i=Nl
image field and ﬂﬂf is the power (variance) of the additive
background noise., Since the N that satisfies Eq (39) tells
how many image field spatial modes have powers greater than

the noise power (i.e. these modes are discernible from the

noise), N is the number of useable DOF of the image field.
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Therefore, Eq (39) relates the useable DOF of an image field
in additive background noise to the spatial eigenvalues of
the propagation channel. Eq (39) is valid for both coherent
and incoherent object fields.

For a near-field, one-dimensional, coherent object field
propagated through free-space, the spatial eigenvalue be-
havior is given by Eq (32) and is illustrated in Figure 5.

The number of DOF of the image field when there is no additive
background noise is Dfo'/z, which is defined by Eq (33). Be-
cause of the rectangular behavior of the ;patial eigenvalues,
Dfo'/z is also the N that satisfies Eq (39). Therefore, addi~
tive background noise has no effect on the number of DOF of
the image field when the object field is coherent.

For a near-field, one-dimensional, incoherent object field
propagated through free-space, the spatial eigenvalue behavior
is given by Eq (30) and is illustrated in Figure 4. The num-
ber of DOF of the image field when there is no additive back-
ground noise is Dfo" which is defined by Eq (31). Because
of the triangular behavior of the spatial eigenvalues, Dfo'
is not the N that satisfies Eq (39). The N that satisfies

Eq (39) for this case is

N = Dy (1 - W«2/|a1=n|2’ ; ogv;f/|ai=N|25 1 (40)

Equation (40) 1s obtained by letting i = N in Eq (30)

and substituting the result into Eq (39). Since Iai'le is
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the power of the Nth spatial mode of the object field and

*vaz is the power (variance) of the additive background noise,
the term ‘vﬁﬁ/'ai=Nl2 in Eq (40) is an inverse power signal -
to - noise ratio (SNR). When there is no additive tackground
noise (xnf = Q) , the inverse SNR in Eq (40) is zero and

N = Dfo' as expected. However, as the additive background
noise increases, the number of useable DOF of the image field

decreases until N

2 2
0O for v;l = ‘ai=N, . Therefore,
additive background noise decreases the resolution capability
of an imaging system when the object field to be imaged is

incoherent.

Relationship Between Spétiél Domain and Frequency Domain

In this section it is shown that when certain conditions
are satisfied,it is asymptotically true that the spatial
eigenvalues of a spatial domain imaging system are obtained
by sambling the power density spectrum (frequency domain) of
the impulse response of the imaging system, There are four
conditions that must be satisfied for the above relationship
between the two domains to be true., First, the spatial imag-
ing kernel of the imaging system must be space-~invariant so
that it can be Fourier transformed to obtain the power density
spectrum of the system's impulse response. Second, the ob-
ject field propagated through the system must have a large
spatial extent. Third, the maximum phase change across the '

object field must be less than some small radian measure such

P . T
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as T[/8. Finally, the object field must be in the near-field.

Near-field means the number of DOF of the image field asso-

ciated with the object field must be much greater than one.
The relationship between the spatial domain and the

b frequency domain 1is shown below for a near-field, one-

dimensional object field propagated through free-space. Both

coherent and .incoherent object flelds are considered. For a

one-dimensional object field, object field aperture R, of

1
Figure 2 is a slit aperture of width dl. For the associated
one-dimensional image field, image field aperture R2 of
Figure 2 is slit aperture of width d2. The propagation chan-
nel of Figure 2 is free-space.

For a one-dimensional, coherent object field it is shown
‘ in Appendix H that the space-invariant, coherent imaging

kernel is of the form
K(Irl-rl'l) = sin( Trdzlrl-rl'l/)\z)/ﬂ',rl—rl'l
. ¢
i Ty €R1 (41)
The coherent power density spectrum Sc(lfl) of the im-
pulse response associated with the coherent imaging kernel

is the Fourier transform of Eq (41):

s (1E]) = rect(|2]Az/q,) (42)
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The power density spectrum given by Eq (42) is illustrated

in Figure 6.

A s Uz

- —-
—d2/2)\z d2/2>\z | £

Figure 6 - Coherent Power Density Spectrum

The spatial eigenvalues associated with the coherent ob-
ject field are obtained by sampling Sc(|f|). If temporal
eigenvalues were wanted, the sampling frequency would be the
reciprocal of the time period over which the object field was
observed (Ref 19:206), Since spatial eigenvalues are actually
wanted, the sampling frequency is the reciprocal of the width
of the one-dimensional object field. Since the width of the
object field is d1 the spatial sampling frequency is
l?ll = 1/d1 . Therefore, for large d, it is asymptotically
true that the spatial eigenvalues associated with a near-field,

one-dimensional, coherent object field are given by
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}\i = s (1]%,]) = s (i/d;) i 21, 1€1integers

(43)

Applying Eq (43) yields the spatial eigenvalue distribu-

tion illustrated in Figure 7.
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Figure 7 - Spatial Eigenvalue Distribution from

Sampled Coherent Power Density Spectrum

The spatial eigenvalue behavior illustrated in Figure 7
is in agreement witﬁ the behavior given by Eqs (32) and (33).
As the width of the one-dimensional object field increases,
the spatial sampling frequency decreases and the discrete
distribution of Figure 7 approachés a continuous distribution.

The above procedure is now repeated for a'one-dimensional,
incoherent object field, For this type of field, Bendinelli,
et. al., have shown (Ref 1:1500) that the space-invariant,

incoherent imaging kernel is of the form
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K(]F,-F, ) = sin2(7Td2 ]51-‘51',/}\z)/(1'rd2,;1-;1-[/Az)z
: Fl'enl (44)

The inccherent power density spectrum SI(lfl) of the
impulse response associated with the incoherent imaging

kernel is the Fourier transform of Eq (44):

sc(IED) = ALE[Nz/a,) (45)

The power density spectrum given by Eq (45) is illustrated

in Figure 8.

} s CIED

1

A,/ Nz YRGS

Figure 8 - Incoherent Power Density Spectrum

Again, the spatial sampling frequency is I?ll = 1/d1 .
Therefore, for large d1 it is asymptotically true that the
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spatial eigenvalues associated with a near-field, one-

dimensional, incoherent object field are given by

)\i = SI(iITll) = SI(i/dl) i21, i€integers (46)

Applying Eq (46) yields the spatial eigenvalue distribu-

tion illustrated in Figure 9.

-y

Figure 9 - Spatial Eigenvalue Distribution from Sampled

Incoherent Power Density Spectrum

The spatial eigenvalue behavior illustrated in Figure 9
is in agreement with the behavior given by Eqs (30) and (31).
As the width of the one-dimensional object field increases,
the spatial sampling frequency decreases and the discrete

distribution of Figure 9 approaches a continuous distribu-

tion,
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The next chapter describes the operation of two adaptive

imaging receivers and compares the resolution capabilities of

the receivers in the spatial domain and the frequency domain,
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IV Adaptive Imaging Receivers

This chapter has five purposes. The first purpose is to
describe the operation of two ideal, adaptive imaging receiv-
ers. The two receivers are the Channel-Matched Filter (CMF)
Receiver and the Multiplicative-Phase (MP) Receiver. The
second purpose is to derive a turbulent coherent transfer
function (CTF) for each receiver. The third purpose is to
derive a minimum average integrated mean square error (IMSE)
expression for the image field generated by each receiver.
The error is the difference between the image field generated
for free-space propagation versus the image field generated
for propagation through the turbulent atmosphere, The fourth
purpose is to use the derived turbulent CTFs and minimum aver-
age IMSE expressions to compare the frequency domain and spa-
tial domain resolution capabilities of the CMF and MP Receiv-
ers. The final purpose of this chapter is to show the condi-
tion that must be satisfied for the results of this chapter
to be applicable to object fields composed of many isoplanatic
patches (extended object fields).

The first section of this chapter presents the imaging
system geometry and field definitions used throughout the
chapter. The second section describes the operation of the
CMF and MP Receivers. The third section derives a turbulent
CTF and minimum average IMSE expression for the CMF Receiver
while the fourth section does the same for the MP Receiver,
The fifth section compares the two receivers and the final
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section is a discussion of extended object field imaging.

General
Figure 10 shows an adaptive imaging system composed of

an object field plane Pl, receiving plane P, and an image

2

field plane PS' P1 has a circular aperture R, of diameter

1

d of diameter d

2 5 and P3 has

a circular aperture R3 of diameter d1 (same diameter as Rl)'

1° P2 has a‘circular aperture R
The region between P1 and P2 is called the propagation chan-
nel, The region between P2 and P3 is called the adaptive
imaging receiver. The receiving plane P2 is therefore both
the input to the receiver and the output of the propagation
channel. For mathematical convenience the length of the
adaptive imaging receiver is the same length as the propaga-
tion channel. 1In a real imaging system lenses are used to
considerably shorten the length of the adaptive imaging re-
ceiver,

The general impulse response of the propagation channel
of Figure 10 is h21(52,51). When the propagation channel is
free-space, the general impulse response is replaced by the
free-space impulse response hFS(?z,Fl). The free-space im-

pulse response is defined as

heg(F,0F;) = exp[dk(z + |F,-F|%/22)] /3 A2 (47)
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Equation (47) is based on the paraxial and Fresnel ap-
proximations (Ref 7:58). The paraxial approximation is valid

since the distance z between P1 and P2 of Figure 10 is much

greater than the radii of R1 and R2. The Fresnel approxima-

tion is valid since the distance z between P1 and P2 satisfies

the following condition:
3 2 212
z >>[k (x2-x1) + (y2—yl) ] |MAX/8 (48)

where (xl,yl) is a point in R, and (x2,y2) is a point in R

1 2°

RECEIVING PLANE P?

PROPAGATION T ADAPTIVE
CHANNEL 2 IMAGING
L P RECEIVER

OBJECT FIELD PLANE Pl

IMAGE FIELD PLANE P3

Figure 10 - Geometry for Adaptive Imaging
When the propagation channel of Figure 10 is the turbu-
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lent atmosphere, the general impulse response is replaced by
the turbulent impulse response hTB(;Z’;l)’ The turbulent

impulse response is defined as
= = . = =12 .
hTB(rz'rl) = {exp[Jk(z + lrg-—rl, /2z)]/3Xz}
x exp [ X(F,,F) + 3O (F,,F,)] (49)

where X(f'z,?l) and Q)(Fg,?-l) are turbulence-induced log-
amplitude and phase fluctuations respectively. They are
Gaussian random variables (Ref 17:209) with statistics as
given in Appendix I.
EI(?l) is defined as an unknown but nonrandom object
} field in R; of Figure 10. EO(EZ) is defined as the output
field of the propagation channel of Figure 10, By the

Huygens-Fresnel Principle (Ref 2:Chap 6), EO(FZ) is

Eo(’f'e) = f_[EI(i:l)hal(I-z,1'~1)c1?~1 (23)
1

EN(FZ) is defined as a zero-mean, spatially white noise

field in R2 of Figure 10. The autocorrelation function of

EN(FZ) is
< EN(?Z)EN'(?Z') > = N, d(F,-F,") (50)

Since EN(FZ) represents additive background noise, the

40




fiela E(FE) at the input to the adaptive imaging receiver is
E(rz) = Eo(rz) + EN(rZ) (51)

The field E(Fe) is uUsed in the next section to describe

the operation of the CMF and MP Receivers.

Operation of Channel-Matched Filter and Multiplicative-Phase

Receivers

The CHF and HMP Receiveré are ideal, adaptive imaging
receivers, They are called ideal because the general impulse
response hel(Ez,Fl) of a propagation channel is known by the
receivers. A real receiver does not have complete knowledge
of this impulse response, They are called adaptive because
they are able to vary their response to a propagated object
field such that they partially compensate for the effects of
the propagation channel. The effects of interest in this
thesis are turbulence-induced log~amplitude and phase fluctu-
ations,

The CMF Receiver operation is simply the propagation of
the field E(?Z) from P2 to P3 of Figure 10 using a receiver
impulse response that is the conjugate of the impulse response
of the propagation channel. The resultirg image field

A -
ECMF(rS) generated by the CMF Receiver is (Ref 14:2611)

Bopp(Fs) = Js(f«z)hu’(;e,;a)d;a (s2)
2
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The MP Receiver operation is the multiplication of the
field E(Fz) by an optimum phase and then the propagation of
the field from P2 to P3 of Figure 10 using the free-space
impulse response, An optimum multiplicative phase is a phase
that minimizes the average IMSE of the image field generated
by the MP Receiver. The image field ﬁMP(;s) generated by the

MP Receiver is

aA f _ - o
EMP(rS) = J E(rz)exp [j ¢o(r2)]hFS(r2’r3)dr2 (53)
2
where @o(?z) is an optimum multiplicative phase defined in
R2 of Figure 10.
The next section uses Eq (52) as the basis for deriving

the turbulent CTF of the CMF Receiver and the minimum average

IMSE of the image field generated by the CMF Receiver.

Channel-Matched Filter Receiver

The turbulent CTF of the CMF Receiver is derived first
followed by a derivation of the minimum average IMSE of the
image field generated by the CMF Receiver. All averages are
with respect to the random log-amplitude and phase fluctua-
tions of the turbulent atmosphere.

Turbulent Coherent Transfer Function - When the propaga-

tion channel of Figure 10 is the turbulent atmosphere, the
. _
general impulse response h,, (rz,ra) of Eq (52) is replaced

* . -
by the turbulent impulse response hTB (r2,r3) defined by
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Eq (49). For propagation through the turbulent atmosphere,

Shapiro has shown (Ref 14:2612) that Eq (52) is rewritten as
- 12 A - ..
exp(Jk|T4|/22)< Egyp(Fy) > =

(a,/2 )\Z),R[exp(jkl'fl'2/2Z)EI(Fl)exp[—D(|?1-53[)/2]
1

x 3 (0|5 =Fg|dp/ N =) /(1/ | =Ry |V aF, (54)

where D(l?l—Fsl) is the spherical wave structure function
(Ref 4:1374), This function is defined as

5

D(IEl-Fal) = 1.09k‘°-chz(|?~1-53,;3— (55)
where k = 2Tr/>\ is the wave number, z is the propagation
distance of the object field, and CN2 is the refractive in-
dex structure parameter of the turbulent atmosphere
(Ref 9:1526). Equation (54) is derived in Appendix I.

Shapiro has also shown that the average image field
<:§CMF(?3):> is obtained by convolving the object field
EI(?l) with the following CMF Receiver average impulse re-

sponse <h., - (r)>:

CMF

<hye(F)> = dyexp[-D(1F])/2]5, (TTF|ay/ Na) /2N 2|7
(56)
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Note that Eq (56) does not include the quadratic phase
factors of Eq (54). The factor on the right side of Eq (54)
is not included because the propagation distance z satisfies

the following condition:

z > k|51|2,mx/2 (57)

Therefore, the quadratic phase on the right side of
Eq (54) is approximately unity over aperture Rl of Figure 10
(Ref 7:61). The quadratic phase factor on the left side of
Eq (54) is not included because it is an image field phase
that is due to the geometry of the imaging system rather than
to the propagation channel.

The average turbuelnt CTF <HCMF(f)> of the CMF Receiver
is obtained by taking the Fourier transform of Eq (56). The

average turbulent CTF is

[- -
<Hgup(¥)> = 2T exp[-D(x7rd1/2'\/Dfo)/z]Jl(zTrx)
(-]
x J°(2TT'T'|x)dx (58)
wnere |F'| = |¥|2Az/da, and D, is defined by Eq (29).

Equation (58) is derived in Appendix I.

Shapiro has plotted <:HCMF(T):> for propagation through
the worst-case turbulent atmosphere (Ref 14:2612),., The
worst-case turbulent atmosphere means that apertures R1 and
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R2 of Figure 10 are the same size and the variance of turbu-
lence log-amplitude fluctuatic-" .s 0,5, Shapiro's plots
indicate that the average turbulent CTF contains spatial fre-
quencies higher than the free-space, diffraction-limited cut-
off lf'l. This increase in spatial frequency content is
probably due to the refractive effect that the turbulent at-
mosphere has ‘on the propagated object field. Refraction
causes changes in the angle-of-arrival of the propagated ob-
Ject field at the CMF Recelver, which results in a spreading
of the generated image field. This spreading shows up as an
increase in the spatial frequency content of the average tur-
bulent CTF, Because of this effect, the spatial frequency
cutoff of the CTF is not a valid measure of the resolution
capability of the CMF Receiver. 1In the following subsection
it is shown that the average IMSE of the image field gen-
erated by the CHMF Receiver is a valid resolution measure,

Integrated Mean Square Error of Image Field - The aver-

A
age IMSE of the image field E 3) generated by the CHMF

cvr (T
Receiver is:

- A - 2 -
<IMSE> = ﬁf < [E(rs) - ECMF(ra)] >dr, (59)
3
where E(Pa) is the image field for free-space propagation.
E(Fs) is obtained from Eqs (23), (51) and (52) by replacing ‘
the general impulse responses with free-space impulse re-

sponses. When propagation 1s through the turbulent atmosphere
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and the additive background nolse is zero-mean, spatially
white noise, it is shown in Appendix J that the average IMSE
is

: < IMSE > = R{I{I{I{I{EI(G)EI*(a)hFS(G,G)hFS*(ﬁ,ﬁ)

x th*(\_r,Fs)hFS(ﬁ,f'a)<{l-exp[X(ﬁ,i)]

x exp [X(,F) ]exp[-3 (5,7 + 3 O(,F,))

+ exp [X(\-r,ﬁ) + X('\'/,Ps)]exp[j Q)(?’-G)]

| x exp[-3 P(7,59)] + exp[X(%,0) + XG,M)]

x exp [X(7,F;) + X(3,5,)]exp[5 07, D]

x exp[-3 0,7y ]exp[-3 DG, R + 3 ¢J(a,;~3>]}>
x du dm dv dn dF¥; + N_D.

(60)

where Dfo is defined by Eq (29). The integral term in Eq (60)
is zero when the object field is isoplanatic. The object
field is isoplanatic when its maximum spatial extent is less

than the atmospheric coherence length r, defined in Chapter I1I.
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Isoplanatism permits the turbulence-induced log-amplitude and
phase fluctuations of Eq (60) to be written as a function of

only aperture R, of Figure 10 (Ref 15:463). For isoplanatic

2
conditions, it is shown in Appendix J that Eq (60) reduces to

<IMSE> = N D, (61)

It is further shown in Appendix J that Eq (61) is valid
for free-space propagation even though it is derived from
Eq (60) which is based on propagation through the turbulent
atmosphere, Therefore, when the object field is isoplanatic
and the additive background noise is zero-mean, spatially
white noise, the average IMSE of the image field of the CHUF
Receiver is the same for the turbulent atmosphere as it is
for free-space.

Using a different approach than that used in Appendix J,
Shapiro has showvn (Ref 14:2611) that the IMSE of the image
field, conditioned on knowledge of mode-amplitude estimator

statisties, is

IMSE = NoD (62)
where D. is defined by Eq (35). Since <Df> = Dfo

(Ref 13:Appendix), Shapiro's unconditional IMSE expression
is the same as Eq (61),

Shapiro has also shown that Eq (61) is not only the
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minimum average IMSE expression for the CMF Receiver but that
it is also the smallest average IMSE achievable by any ideal,
adaptive imaging receiver operating in zero-mean, spatially
white background noise. The minimum average IMSE expression
of Eq (61) is therefore a standard for comparing the minimum
average IMSE expressions of other ideal, adaptive imaging
receivers,

The next section derives the minimum average IMSE of the
image field generated by the MP Receiver and the turbulent

CTF of the MP Receiver.

Multiplicative-Phase Receiver

The minimum average IMSE of the image field generated
by the MP Receiver is derived first followed by a derivation
of the turbulent CTF., All averages are with respect to the
random log~amplitude and phase fluctuations of the turbulent
atmosphere.

Integrated Mean Square Error of the Image Field - The

average IMSE of the image field £ (53) generated by the MP

MP
Receiver is

f 2 - B (7 )]2 e

<msE> = )< [E(Fy) - Eyp(Fy)]|? >ar, (63)
2

where E(?s) is the image field for free-space propagation,

E(Fa) is obtained from Eqs (23), (51) and (53). In Eq (23)

the general impulse response 1s replaced by the free-space
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impulse response and in Eq (53) ¢°(?~2) is set equal to zero.
When propagation is through the turbulent atmosphere
and the additive background noise is zero-mean, spatially

white noise, it is shown in Appendix K that the average IMSE

of the image field is minimized if the optimum multiplicative

phase ¢o('x"2) of Eq (53) is chosen such that the following

sufficient condition is satisfied:

Im ffffE (DE; (Mhpg(V,@hps” (7,M)hgs” (7,F,)

3 2 1 1

x hFS(ﬁ,53)<exp[X(E,ri)]exp[—j'@(ﬁ,ﬁ) - J¢o(ﬁ)]

x [1 - exp [X(%,0)] exp [5 0(7,8) + Jq)o(v)]]

x du dm dv dr =0 ; G,x'ﬁeal G,ﬁeRa (64)

3

In Appendix L it is shown that, when the sufficient
condition above is satisfied, the minimum average IMSE of

the image field generated by the MP Receiver is

< IMSE > = fffjfE (u)EI (mhpg(v, u)hFs (n,m)

3 2 2 1 1

hFS'(\'r,?-a)th(ﬁ,?3)[1 - 2<exp [X("z,ﬁ)]
x exp[30(F,0) + 3 P, (D]>+ <exp [X(7,5)]
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x exp[ X(5,m)]exn[3 P(7,8) + 5 Po(® - 3 O(H,m)]
x exp[—j ¢°(ﬁ)]>] du dm dv dn dr
1 v neERr (65)

Turbulent Coherent Transfer Function - Before the turbu-

lent CTF of the MP Receiver can be derived, a choice must be
made for @o(f'z) in Eq (53). The choice should satisfy the
sufficient condition of Eq (64) and therefore minimize the
average IMSE of the image field generated by the MP Receiver.
The problem is that there is no ¢%(52) that meets this re-
quirement without restrictions first being placed on the
propagation conditions or type of object field propagated.
However, since many real adaptive receivers cancel turbulence-
induced phase fluctuations, a compromise choice is

@o(?z) = —¢(52) . For this choice of $0(52) and propaga-
tion through the turbulent atmosphere, it is shown in Appen-

dix M that Eq (53) is rewritten as
-2 ~ - 2
exP(Jk|r3| /22)<Epp(rg)> = (/2N z)exp(- /2)
- 12 - -
x fexp(Jklrll /22)EI(r1)exp[-D¢(0,r1)/2]
R
1

x Jl(1r|§1-i‘-3|d2/)\z)(1/|31-;3|)cu‘~1 (66)
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where DO(O,FI) is the phase structure function defined by
Eqg (18I) and va? is the variance of turbulence-induced-
log—-amplitude fluctuations,

Since the phase structure function of Eg (66) is not
space-invariant, it is not possible to obtain a space~
invariant impulse response and then Fourier transform the
response to obtain the turbulent CTF of the MP Receiver,
However, if the object field is isoplanatic, then the phase
structure function in Eq (66) is zero. In this case, the

average image field < %, (F.)> 1is obtained by convolving

MP*T 3
the object field EI(FI) with the following P Receiver aver-
age impulse response <hmp(?)>:

<h(F)> = exp(-vf/z)dz.rl(TrlFldz/Xz)/z)\zIFI (67)

Note that Eq (67) does not include the quadratic phase
factors of Eq (66). They are not included for the reasons
given in the previous section. The average turbulent

CTF <H,,.(f) > of the MP Receiver is obtained by taking the

MP
Fourier transform of Eq (67). The average turbulent CTF is

4

<HL(£)> = exp(-w2/2)2 0[5, (2Tx) 3 (2TT|F) x)ax  (68)
(]

where l?'l = |?|2)\z/d2 .

The following section uses the turbulent CTFs and
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minimum average IMSE expressions derived in this section and
the previous section to compare the resolution capabilities

of the CMF and MP Receivers.

Comparison of Channel-llatched Filter and Multiplicative-Phase

Receivers

The resolution capabilities of the CMF and MP Receivers
are first compared in the frequency domain using their turbu-
lent CTFs., This is followed by a comparison in the spatial
domain using the minimum average IMSE expressions.

Since the turbulent CTF of the MP Receiver is based on
the assumption that the object field is isoplanatic, this
same assumption must be applied to the turbulent CTF of the
CMF Receiver before a valid comparison of the two receivers
can be made. If the object field is isoplanatic, then the
spherical wave structure function in Eq (58) is zero and the

average turbulent CTF of the CHMF Receiver is

o0
<HCMF(?)> =21 J1(27Tx)J°(2Tr"f‘le)dx (69)
o
where l?'l = l?'z}\z/dz .

Comparing Eqs (68) and (69), it is seen that except for
a constant amplitude attenuation the turbulent CTF of the MP
Receiver is identical to that of the CHF Receiver. Since
the attenuation in Eq (68) is independent of spatial frequen-

cy the two turbulent CTFs have the same spatial frequency
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cutoff, Since this cutoff is not a valid measure of the reso-
lution capability of the CMF Receiver it is also not a valid
resolution measure for the MP Receiver, Excent for the con-
stant amplitude attenuation in Eq (68), the turbulent CTFs

are similar in another way. They both approach

circ(|f|2)\z/d2) as d,—>so, where d, is the diameter of the

2
input aperture of either the CMF or the MP Receiver., Recall
that circ(|F|2Az/d,) is the diffraction-limited CTF of a
free-space imaging system with a circular aperture of diame-
ter d2. Therefore, a CHF Receiver with a large input aper-
ture achieves free-space, diffraction-limited resolution of
isoplanatic object fields propagated through the turbulent
atmosphere as does a large-aperture P Receiver that only
cancels turbulence-induced phase fluctuations.

For the joint conditions of propagation of an isoplana-
tic object field through the turbulent atmosphere and zero-
mean, spatially white background noise, the minimum average
IMSE expression of the CMF Receiver is given by Eq (61).

For the same conditions, the comparable expression for the
MP Receiver is obtained from Eq (65) by letting the turbu-
lence-induced log-amplitude and phase fluctuations be a func-

tion of only aperture R, of Figure 10, This modification

2

of Eq (65) accounts for an isoplanatic object field.
Comparing Eqs (61) and (65), it is seen that the minimum

average IMSE of the image field generated by the MP Receiver’

differs from the minimum average IMSE of the image field
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generated by the CUF Receiver. The amount of difference is
the value of the integral term in Eq (65). Since the mini—
mum average IHSE of the image field generated by the CUF
Receiver is the smallest average IMSE achievable by any ide-~
al, adaptive imaging receiver operating in zero-mean, spa-
tially white background noise, the integral term in Eq (65)
must be non-negative. Therefore, the minimum average IMSE
of the image field generated by the MP Receiver is equal to
or greater than that of the CilF Receiver. The CMF Receiver

can zenerate an image field having D degrees of freedom

fo
without the average IINSE of the image field exceeding the
minimum average IMSE of Egq (61)., The same is true for the
MP Receiver only when the integral term in Eq (65) is zero.
There are at least two cases where a value can be chosen
for ¢%(52) that not only satisfies the sufficient condition
given by Eq (64) but also eliminates the integral term in
Eq (65). In these two cases the MP Receiver generates an
image field having the same minimum average IMSE as an image
field generated by the ClF Receiver. The first case is
free-space propagation and the proper choice for ¢0(52) is
¢°(?‘2) = 0 . The second case is that of an isoplanatic
object field propagated through a turbulent atmosphere that
only induces phase fluctuations in the field. In this case
the proper choice for ¢°(?2) is ¢O(F2) = - ¢(?2) ; the
cancellation of turbulence-induced phase fluctuations. This

choice is valid for all classes of object fields (coherent,
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incoherent, point source, etc.) as long as the field is iso-
planatic.

There are at least two cases where the choice of
¢o(;2) = - q)(f‘z) satisfies the sufficient condition given
by Eq (64) but does not éliminate the integral term in Eq (65).
In these cases the average IMSE of the image field generated
oy the MP Receiver is a minimum for that receiver but it is
greater than the minimum average IMSE of the image field gen-
erated by the CMF Receiver. The first case is propagation
of a point source fi=ld through the turbulent atmosphere while
the second is propagation of an isoplanatic, incoherent object
field with a real and even object intensity distribution func-
tion through the turbulent atmosphere. In both cases the
turbulent atmosphere induces log~amplitude and phase fluctua-~
tions in the propagated field. It is shown in Appendix N that
the sufficient condition given by Eq (64) is satisfied in
both cases when ¢o(?2) = -¢(§2) . It is also shown in
Appendix N that the minimum average IMSE of the image field
assoclated with a point source field with a complex ampli-

tude E° is
<IMSE > = (d,/2 )\z)zrzoEo' [1 - 2exp(- Vf/z) + exp(-vf)]

x ;![Jl(n'dzl;sl/xZ)]2(1/|;‘3|)2 drg + NgDg,
s (70)

where vrz is the variance of turbulence-induced log-amplitude

x
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fluctuations. From Appendix N, the minimum average I!NSE of
the image field associated with an isoplanatic, incoherent
object field with a real and even object intensity distribu-

tion function I(Fl) is
2 2 2
< IMSE > = (d2/2 Az) [1 - 2exp(-v;‘ /2) + exp(-v"( )]

x I{}IJ;I(;J‘) AU CAESAND NG

1 dr3 + Nono (71)

- - 2 o

x (1/|r3—r1|) dr

The next section presents the condition that a imaging
system nust satisfy for the results of this section to be -

applicable to an object field that extends spatially beyond

an isoplanatic patch.

Imaging Extended Object Fields

Much of the preceding work is based on the assumption
that the object fields do not extend spatially beyond a sin-
gle isoplantic patch. Since most object fields of interest
are composed of many isoplanatic patches, this would seem to
restrict the usefulness of the work. This is not a restric-
tion, however, provided the propagation channel of the imag-
ing system is underspread, Shcopiro has shown (Ref 12:472)
that an underspread channel is one that insures that the image

flelds associated with spatially disjoint isoplanatic patches
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of an object field are essentially disjoint themselves. Since
the image fields are essentially disjoint, imaging an extended
object field is reduced to an imaging of each isoplanatic
patch and a summation of all the resulting image fields.

The next chapter summarizes the conclusions reached in

this thesis and suggests areas requiring further study.

!
( 3
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V Conclusion

Conclusions

Space-invariance in an imaging system is a prerequisite
for deriving frequency domain transfer functions. In con-
trast, the spatial domain counterpart of transfer functions,
spatial eigenvalue distributions, are derived using the Normal
Ilode Approach without requiring an imaging system to be space-
invariant, This is the main advantage of a spatial domain
imaging description.

If a spatial domain imaging system is space-invariant,
then for a spatially-large object field it is asymptotically
true that the system's spatial eigenvalues and hence its spa-
tial eigenvalue distribution are conveniently obtained by
sampling the power density spectrum of the system's impulse
response. Since the power density spectrum is a frequency
domain concept, the two domains are related through the sam~
pling process. Besides space-invariance and a spatially-large
object field, two other conditions must be satisfied for the
sampling to yield a correct spatial eigenvalue distribution.
The object field being propagated through the systém must be
in the near field and the maximum phase change across the
field must be small,

The shape of an imaging system's spatial eigenvalue dis-
tribution depends only on whether an object field propagated
through the system is coherent or incoherent. If the object

field is coherent the distribution has a rectangular shape.
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If the object field is incoherent the distribution has a tri-
angular shape. The highest nonzero eigenvalue order of a spa-
tial eigenvalue distribution is a function of an imaging sys-
tem's input and output apertures, the propagation medium of
the system ar.d the wavelength of an object field propagated
through the system. In addition, if the object field is in-
coherent the highest nonzero eigenvalue order is also a func-
tion of any additive background noise in the imaging system.
The highest nonzero eigenvalue order is not effected by ad-
ditive background noise if the object field is coherent.
From the frequency domain, it is concluded that a CUF

Receiver with a large input aperture achieves free-space,
diffraction-limited resolution of isoplanatic object fields

‘ propagated through the turbulent atmosphere. The same con-

clusion is made for a P Receiver operating so as to cancel

turbulence-induced phase fluctuations.

From the spatial domain, it is concluded that for imag-

E ing isoplanatic object fields in zero-mean, spatially white

! background noise, the CMF Receiver can generate an image field

having the maximum obtainable DOF and also the minimum obtain-

able average IIMSE of any ideal adaptive imaging receiver.

There are at least two cases when the preceding statement also

applies to the MP Receiver. These cases are an object field

propagated through free-space and an isoplanatic object field

propagated through a turbulent atmosphere that only induces

phase fluctuations in the field. In the latter case the MP
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Recelver generates an image field having the minimum obtain-
able average IMSE by cancelling the turbulence-induced phase
fluctuations in the propagated object field. For point
source fields and isoplanatic, incoherent object fields with
real and even object intensity distribution functions, phase
cancellation minimizes the average IMSE of the image field
generated by the MP Receiver but not to the minimum obtain-

able average value of the CHMF Receiver.

Suggestions for Further Study

The relationship between the spatial domain and frequency
domain was shown for a one-dimensional object field propagated
through free-space. This relationship should be verified for
two-dimensional object fields (square and circular apertures)
and for propagation through the turbulent atmosnhere.

The suffiéient condition given by Eaq (64), for minimizing
the average IMSE of the field generated bv the MP Receiver,
is complicated. 1If possible, an attempt should be made to
express the optimum multiplicative phase of the sufficient

condition in terms of the object field.
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Appendix A - Turbulent Coherent ™ransfer Function

This appendix derives Eq (13), which is the average
transfer function for the imaging system of Figure 1 when
the propagation channel is the turbulent atmosphere and the

object field is coherent. The derivation begins with Eq (12):
< Toou® > = Ty_con(®<exn [ X(ha,|E])
+ 5 PNa |T)] > (12)

where zb—COH(?) is the free-space CTF defined by Eq (4), and
X(Adirf‘l) and ¢(>\di|f“') are respectively the log-amplitude
and phase fluctuations of the turbulent atmosphere. Since
X(Adilf‘l) and ¢()\di|f‘l) are independent random variables
(Ref 4:1374), the average on the right side of Eq (12) is

written as two averages (Ref 11:211):
x <exo[s0(Na,|2D] > (1A)
Prior to evaluating the averages on the right side of
Eq (1A), the first and second order statistics of X()\diﬁ‘l)

and ¢(Adilf|) are given:

<X |EH>=f= - (24)
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<PAq|Eh> =0 (34)

2 2
<@ ()\dilf‘l)>=v¢ (4A)
Equation (2A) is a ¢onsequence of energy-conservation }
considerations (Ref 4:1374). It can be shown (Ref 4:1374)

that the first average on the right side of Eq (1A) is equiva-

lent to
< exp [X()\di,f‘l)] > = exp[<X(}\ dilf‘,)>]

X exp{< [X()\dilt'“l) - <X()\di|’f,)>]2>/2}
(54)

Substituting Eq (2A) into Eq (5A) yields
< exp [X()xdilf‘l)]> = exp(—vi2/2) (6A)

It can be shown (Ref 4:1374) that the second average on

the right side of Eq (1A) is equivalent to

<exp[J dXa;|2D] > - exp[< 4 ¢(Xdi|§|)>]

x exp{- < [pNalzh - <¢()\di|?|)>]2>/2}
(74)

Substituting Eqs (3A) and (4A) into Eq (7A) yields
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<exp [X(AQ|ED]> = exn(-g7/2) (84)

Substituting Eqs (6A) and (8A) into Eq (lA) yields

- = 2 _2

<Tou®> = ro-coa(f)exp['(vac Ve /2] (94)
Finally, letting §72 = (Gf + Vaz yields Eq (13):

< Ty > = Ty_ou(Pexn(v?/2) (13)
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Appendix B - Fredholm EZguation for !Normal lMode Imaging

This appendix derives Eq (25) from Eqs (19), (21) and
(23). Eq (25) is then used to obtain Eq (26), which is a
Fredholm Equation for lormal liode Imaging. Equations (19),

(21) and (23) are repeated below: 1

o0
Ex(ry) = Zai d)i(rl) (19)
i=1 ]
= A
E (F,) = Zbi\I/i(rz) (21)
i=1
Eo(r2) = g{-EI(rl)h2l(r2,r1)dr1 (23)
1
Substituting Eqs (19) and (21) into Eq (23) yields
o0 f“
Zbi\yi(rz) = J Z a; Q)i(rl)h‘,zl(rz,rl)clrl (1B)
i=1 1 i=1
Changing the order of integration-summation on the right
side of Eq (1B) yields
o0 a0 f
Zbi\Pi(rz) = ZaiR ¢i(r1)h21(r2,r1)dr1 (2B)
i=1 i=1 **1
If the ¢i(r1) and \I/i(r2) are chosen such that Eq (2B)
d
is satisfied term by term, then the following is true:
bi\Pi(rz) = aif‘!’¢i(r1)hzl(r2,rl)dr'1 (3B) {
1 «
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The ratio of bi to ai is defined as

b;/a; = '\/ )‘i (4B)

Substituting Eq (48) into Eq (23) yields Eq (25):

1

Since the ¥yi(?2) in Eq (25) are a CON set of spatial

eigenfunctions, the following is true:
b - * -
| Rf‘I’iug)\Pj (F,)aF, = dj, (58)
2

Expressing Eq (25) in terms of QQKEZ) and the conjugate
| .
\ of Eq (25) in terms of SPJ (r2), and then substituting the

resulting expressions into Eq (58) yields
&y = WM\ )P_!Rj¢i(r1)h21(r'2,rl)dr1
21

* * o - - - -
' ] . ]
X Rf¢3 (rl )h21 (r,,ry )dr, dr, ; r;'€R,
1 (6B)

Changing the order of integration in Eq (6B) yields

diy = a/yf Ay )\J)J!thl(iz,;l)hal’(;z,;l-)d;z

17172
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- - * - -
' ' . "
X d)i(rl)drl @J. (r'1 )dr‘l ; r.'€R (73)
One way Eq (78) is satisfied is for
- - - * . - - -
] —_ ]
Ai ¢i(r'1 ) = ffh21(r2’r1)h21 (r,,r;')dr, ¢i(r1)dr1
R.R
172
1 (8B)
where the imaging kernel K(rl',rl) is defined as

- - - - * - - -
—_ 1 ] .
K(ry',ry) = Ijnzl(rz'rl)hzl (ryyryt)dr, 5 r'€Ry
‘2

(27)

Substituting Eq (27) into Eq (8B) yields Eq (26):

R

)\i d)i(il') =fx(?~1-,'f~l) ¢, (¥,)ar, ; T,'€R; (26)
1 N
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Appendix C - Degrees of Freedom Expression for a

Near-Ficld, Circularly-Apertured, Coherent

Object Field Propagated through Free-Space

This appendix derives Eq (29), which is the DOF expression
for a near-field, circularly-apertured, coherent object field
propagated through free-space. The derivation begins with

Eg (25):

)\i(bi(il') =!K(El',?1)d)i(?l)d?l ; T,'€R; (25)
1

* .
Multiplying both sides of Eq (25) by d)i (rl') and inte-

grating over Rl yields
)\iftbi(slwcpi*(;l')dr«l' - ffx(?l'.‘flwi(;l) VRNCHD
Ry RiRy

b'e drl drl' : r-leR1 (1c)

* o
Using the orthogo.iality of the @i (rl) to simplify the

left side of Eq (1C) yields

A, = Jﬁ[x(;lo,;lwi(;l)q)i (F;')eT, dF;' ; T €R,
11 (2C)

Summing both sides of Eq (2C) over all values of i yields

s o0
A =ffx(".‘) (t,) @, (F,*)dF, aF,"
2; ! RyPy o :I.z=1¢i 1 ¢i 1
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Applying Mercer's Theorem to the right side of Eq (3C)

yields

w18

>\i = ffK(rl',rl) J(rl'-rl)dr'1 dr,' ; ry'€R,

1 R, Ry 1
(4c)

Using the sifting property of the delta function, Eq (4C)

is simplified to 4
o0
zxi = fK(rl,rl)drl (5C)
i=1 R1

For free-space propagation, the imaging kernel K(Fl,Fl)

in Eq (5C) is defined as

*
K(rl,rl, = 2 hFS(rz’rl)hFS (r2,r1)dr2 (6C)
2
where

= = = =12 .
hFS(rZ’rl) = e;p[jk(z + ,ra-rll /22)]/3)\2 (47)
Substituting Eq (47) into Eq (6C) yields

K(F,,F,) = (1/)\2)2!&"2 = TT(d2/2>\z)2 ~(70)
2

where R2 is a circular aperture of diameter d2. Substituting

Eq (7C) into Eq (5C) yields
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™18

1)\1 = M(d,/2 )‘Z)ZRfd;l = (Trdld2/4>\z)2 (8C)
1

[ el
1t

where R1 is a circular aperture of diameter dl' For a near-
field, circularly-apertured, coherent object field propagated
through free-space the spatial eigenvalue behavior is given
by Eq (28):

X\ 1 i..<..Dfo i21 , i€integers

i .
0 3 1>Dg (28)

From Eq (28), the summation of)\i over all values of 1

yields

w18

1}\1 =D, (9c)

Equating Eqs (8C) and (9C) yields Eq (29):

Dy, = (Trd1d2/4>\z)2 (29)
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Appendix D ~ Sampling Theorem Derivation

of a Degrees of Freedom Expression

This appendix derives Eq (29) using the Sampling Theorem.,
Equation (29) is the DOF expression for a near-field, circu-
ilarly-apertured, coherent object field propagated through
free-space. The Sampling Theorem says (Ref 6:93) that the
number of DOF.of an image field is obtained by dividing the
solid angle subtended by an object field aperture R1 (when
viewed from the image field aperture R2) by the diffraction

limited field of view of the image field R In this appen-

2.
dix apertures R1 and R2 are circular apertures of diameters

d, and d, respectively. The apertures, solid angle {25 and

1 2
’ field of view §}DL mentioned above are illustrated in Figure 11,

P, of Figure 11 is an object field plane while P2 is an image

1
field plane, The planes are separated by free-space.

The solid angle (} subtended by the object field aper-

S

ture Rl of Figure 11 1is

(1D)

m:)
n
>

/2
Ry

= Trd12/4 (2D)

[y
I

The diffraction limited field of view YQDL of the image

field aperture R2 of Figure 11 is (Ref 6:93)
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Q= N/ag, (3p)

AR2 = 7Td22/4 (4D)

IMAGE FIELD PLAMNE P

2

2

P Z{______OBJECT FIELD PLANE P1

Figure 11 - Sampling Theorem Geometry

Dividing Eq (1D) by Eq (3D) yields Eq (29):
Dyo = (AR1/z2)/(>\2/ARZ) = (TTa,9,/4N2)? (29)

where Dfo is the number of DOF of the image field associated

with the object field described at the beginning of this

( appendix, ; ‘
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Aggendix E = Degbees of Freedom Expreséioh for a

Neér;Field, Circularly-Apertured, Coherent Object

Field Prbpagated through Thé Turbulent Atmosphere

This appendix derives Eq (35), which is the DOF expres-

sion for a near-field, circularly-apertured, coherent object

field propagated through the turbulent atmosphere. The deri

vation begins with Eq (5C) from Appendix C:
o0
in = fK(rl,rl)drl (5C)
i=1 Rl

For propagation through the turbulent atmosphere, the

imaging kernel K(Fl,Fl) in Eq (5C) is defined as

- = - - * o oo a
K(rl,rl) = ﬁ{hTB(ra,rl)hTB (rz,rl)dr2 (1E)
2

where

hTB(?a,Fl) = ¢ exp [jk(z + |?2-5;|2/2z)]/sz}
x exp [X(F,,7,) + 30(F,,7))] (49)
Substituting Eq (49) into Eq (1E) yields

K(?l,?'l) = (1/)\2)2Rfexp[2 ,1((?-2,?-1)]c1?~2 (2E)
2

Substituting Eq (2E) into Eq (5C) yields




18

1l

>\i = (I/Xz)algexpk X(?‘z,?l)]df'2 dFl (3E)
172

For a near-field, circularly-apertured, coherent object
field propagated through the turbulent atmosphere, the spa-

tial eigenvalue behavior 1s given by Eq (34):

A 1 iSDf i21 , 1i€integers

1:
0 i)Df (34)

From Eq (34), the summation of Xi over all values of i

yields

w18

3‘1 - D, (4E)

Equating Eqs (3E) and (4E) yields Eq (35):

(1/Az)2f!Rfexp[2X(?Z,Fl)]d?'z dF, (35)
172

75

i C e ——— s o ey Lom— R e e e =

i

LAV
x4 gk V. HEYS
EL -

R P T U

C e e e




Appendix F - The Consequence of Energy Conservation with

Regard to the Degrees of Freedom of an Image Field

This appendix shows that since the mean of )((?2,51)
must equal the negative of the variance of }((52,51), the
average of D. must equal D.,. )((?2,51) represents the log-
amplitude fluctuations of the turbulent atmosphere, Df is
the number of DOF of the image field associated with a near-
field, circularly-apertured, coherent object field propagated

through the turbulent atmosphere while D is the number of

fo
DOF of the image field associated with the same object field

propagated through free-space., < Df > and ch> are defined

as follows:
D, = (1/Xz)2J}!<exp[2 X(§2,§1)1>d?~2 a¥,  (1F)
12
D, = (1/)\z)2[f dF, dr (2F)
fo R1R2 2 1

It can be shown (Ref 3:71) that the average in Eq (1F)

is equivalent to
<exp[2 X(FZ,FI)]> = exp[2<X(f~2,Fl)>]
X exp <[2X(Fz.i‘1) - 2<X(f'2.31)>] 2>/2% (3F)

Energy conservation requires the following to be true
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(Ref 4:1374):
< X(F,,7))> = [ = -v;f (4F)

where 1 is the mean of X(Fz,?l) and sz is the variance of

)((52,51). Substituting Eq (4F) into Eq (3F) yields
< exp|2 X(F,,7)]> =1 (5F)

Substituting Eq (5F) into Eq (1F) reduces Eq (1F) to
Eq (2F) and yields

<Df> =Df0 (6F)
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Appendix G - Average IMSE of a Normal Mode

Image Field in Additive Background Noise

This appendix derives Eq (38), which is the average IMSE
of a Normal Mode image field in additive background noise.
The derivation follows the example of Bendinelli, et. al.,

(Ref 1:1499), The average IMSE of the Normal Mode image

field 1is ﬂ
- - 2. -
< IMSE(N)> = §£<[Eo(r2) - E, (rz)] >dF, (36)
where
o0
Ey(F,) = ) by ¥, (F)) (21)
i1

and where

1
Eo'(f‘z) = Z (bi+n1)\yi(52) (37)
i1=1

EO(FZ) is the image field generated in aperture R2 of |
Figure 2 in the absence of background noise while Eo'(iz) is
an estimate of the image field generated when background
noise is present. The number N in Eq (37) is chosen such
that the average IMSE of the image field is minimized, This
is the reason N appears as an argument in Eq (36)., The ng
in Eq (37) are the random noise coefficients of the zero-mean,

spatially white noise., The average of Eq (36) is with respect
to these random noise coefficients. The gyi(;z) in Eqs (21)
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and (37) are a CON set of spatial eigenfunctions defined in

image field aperture R2 of Figure 2, The by in Egqs (21) and

(23) are image field weighting coefficients that are related

to object field weighting coefficients by

bi = 'V Ai ai (lG)

Substituting Eq (1G) into Eqs (21) and (37), and then

s

substituting Eqs (21) and (37) into Eq (36) yields

(- =4
< IMSE(N) > = f< > AN o, ¥y

R2 i=N+1

N 2
Zni\I’i(Ea) > dF, (26)
i=1

Expanding Eq (2G) and reversing the integration-summation

order yields ﬁ

< IMSE(N)> = Z VA ﬁai J‘P (7)) ¥," (5,47,

_N+1 J=N+1

ig:<nn>f\Y(r)\y(r)dr ‘

i=1 j=1

-22 tfai<n >f\P (T, )\I/ (r,)dr,

1=N+1 j=1

(3G)

By the orthogonality of the YPi(Bz)

- - - :
!Ti(rz)wj (r,)dr, = J;J (46) _
2
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Substitutineg Eaq (4G) into Eq (3G). and noting that the
last term in Ea (3G) is zero because the summations are over

disioint intervals. yields

< IMSE(N) > = f >‘ilai|2 + i <|ni|2> (5G)
i=N+1 i=1

Since the additive background noise is zero-mean, the

average on the right side of Eg (S5G) is
2 2
<|“1| > = v (6G)

where Vﬁ? is the variance of the noise. Substituting Eq (6G)

into Ea (5G) yields (after a rearrangement of terms) Eq (38):

oo N
<msE> = ) Ayfay|® - LA |ayP-wD e
i=1

i=N+1

-
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Appendix H - Space-Invariant Imaging Kernel for a Near-Field

One-Dimensional Coherent Object Field

Propagated through Free-Space

This appendix derives Eq (41), which is the space-
invariant imaging kernel for a near-field (Dfo'/z > 1),
one-dimensional, coherent object field propagated through
free-space. Qith respect to Fizure 2, the general expression

for the imaging kernel K(Pl',Pl) is given by Eq (27):

- - - - * o - - -
- [ ] .
K(rl',rl) = é{hgl(ra,rl)h21 (r2,r1 )dr2 ; rl'e R1 (27)
2

where Rl is the object field aperture,R2

aperture and h21(52,§1) is the general impulse response of

is the image field

the propagation channel., For a one-dimensional object field,
Rl is a slit aperture of width dl‘ For the associated one-

dimensional image field, R, is a slit aperture of width d2.

2
For free-space propagation, the general impulse response
h21(52,§1) is replaced by the free-space impulse response

)

- - _ -, =
th(rz,rl). For a space-invariant imaging kernel, K(r1 ' Ty
is replaced by K(IFI-?l'I). Therefore, for a near-field

(Dfo'/z >> 1), one-dimensional, coherent object field propa-
gated through free-space, the space-invariant imaging kernel

from Eq (27) is

+d2/2
- - - - * - - -— -
K(|F4~T,'|) = | hpg(Fp,Ty)hpg (FpoTy')dT, 5 Ty '€R,
-a,/2 (1H)
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where

hFS(Fz,Fl) = exp[jk(z + ,52-?‘1‘2/22)]/3')\2 (47)
Substituting Eq (47) into Eq (1H) yields

K(|Z,=7,']) = (1/Nz)2exp[ik(|F, |2 = |F. 1]2)/22
1771 1 1
+d2/2
x exp[-jk?‘e.(;1-51‘)/22]d52 : El-enl
‘d2/2 (2H)

Evaluating the integral in Eq (2H) and using the iden-

tity sin{w) = [exp(w) - exp(-w)]/zj yields
K('Fl-Fl'l) = (1/)\Z)exp[jk(|51|2 - IFl"2)/2z]
X sin(Trdzli'*l—?-l',/)\z)/n’l?l—?l"
: Fl'eRl (3H)
If the maximum phase change across the object field is
less than some small radian measure such as J[/8, then the

quadratic phase term in Eq (3H) may be eliminated. The condi-

tion for elimination is

x(lillz - ,?1',2)|m/22 << Tl/8 (4H)
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Since the width of the object field aperture is d the

1.
quantity (Ii'-ll2 - l;l'la)lMAx in Eq (4H) is equivalent to

7] = |51y = (4722 (5H)
Substituting Eq (5H) into Eq (4H) yields

z > 24,%/\ (6H)
When Eq (6H) is satisfied, Eq (3H) reduces to Eq (41):
K(|F)-F,'|) = sin(TTdy|Fy -7, 0| / N 2)/ 7|7 -y |

i T.'€ER

1'€Ry (41)

where the (1/A\z) constant in Eq (3H) is dropped because it
is unimportant to the general form of the coherent imaging
kernel.

In addition to Eq (6H), there is another condition that
must be satisfied for Eq (41) to be true. The additional
condition is that the one-dimensional coherent object field

be in the near-field. This means that

Dfo'/2 > 1 (7H)




where

Dpo'/2 = dyd,/2Nz (33)
Substituting Eq (33) into Eq (7H) yields

a, > 2?\z/d1 (8H)
Therefore, for Eq (41) to be true, the propagation dis-

tance z must be large enough to satisfy Eq (6H) and the width

of the image field aperture must be large enough to satisfy

Eq (8H).




Aggendik I- Imégp Field and AVer@ggrCohereht‘Tfahéfef

Function of the Channel~Matched Filter Réceivér

This appendix derives Eqs (54) and (58)., Equation (54)
is the expressi:n for the image fleld generated by the CMF
Receiver while Eq (58) is the expression for the average CTF
of the CMF Receiver, The derivation of both equations begins

with Eq (52):

PO f- .o
ECMF(ra) = J E(rz)h21 (ra,ra)dr2 (52)
2
If propagation is through the turbulent atmosphere then
the general impulse response, h21(?2,53), of Eq (52) is re-
placed by the impulse response, hTB(FZ,Fs). Equation (52)
is then rewritten as
BT f‘ *(¥,,F,)dF (1)
Ecyp(ra) = 2 E(Ty)hpy (r,,rgldr,
2
where

hTB(FZ,Fa) = {exp[Jk(z + 'Pz-ialz/zz)]/.j%z}
X exp [X(Fa,'r"s) + j¢(?~2,?‘3)] (49)

The field E(Fz) of Eq (52) is the input to the CMF

Receiver, By Eq (51) it is




E(Fa) = Eo(;z) + EN(?Z) (51)

where EO(FZ) is the output field of the propagation channel
and EN(?Z) is a zero-mean, spatially white noise field repre~
senting additive background noise, For propagation through

the turbulent atmosphere the field Eo(?z) is expressed as

ofFp) = f!EI(rl)hTB(rz'rl)drl (21)
1

where EI(Fl) is an unknown but nonrandom object field in

aperture R; of Figure 10, Substituting Eqs (51) and (2I)

into Eq (1I) yields

SO S
Ecur'Fs) = Ep(r))hpp(r,, v dhgp (ry,75) dry dr,
R R
oRq
,/' %) *(F. . F.)dE (31)
* 4 Ey(r gy (r,,r5)dr,
2

Since X(r',r) and ¢(F',F) are random variables, the
turbulent impulse response given by Eq (49) is a random func-
tion. Therefore, the image field given by Eaq (3I) is also

random., On the average however the field is

A - - - - * . -
< Egyp(ry) = !JEI(PI)<hTB(r2’r1)hTB (r,,ry)>
oRq

X dr1 dr2 (4I)




where the second term in Eq (3I) is dropped because the noise

field is zero-mean. Substituting Eq (49) into Eq (4I) yields

exp(Jk|T4|°/22)< By (Fg) > = (1/)\z)2§[exp(jk|?~1|2/az)
1

x E;(F,) Rf exp [-3k(F,-Fy) .F,p/2]< exp [X(F,, ;)]
2

X exp [X(?‘z.?'s)]><exp [jd)(;z.?l) - j¢(?2,53)]>
x dr, dr (5I)

where the average of the right side of Eq (5I) is written as
two separate averages of X(r',r) and ¢('f~',§) since these
are independent random variables (Ref 4:1374). Furthermore,
X(7',7) and {(F',T) are Gaussian random variables

(Ref 4:1374) with the following statistics:

<X(F',F)> = [ = -vf (6I)
<P ,F)>=0 (71)
<P?(z',7)> =v§ (8I)

It can be shown (Ref 4:1374) that the first average on

the right side of Eq (5I) can be expressed as ' ;




to

<exp [X(F0F) + X(F,050)]> = exp[< X(F,,5,)>]

x exp[< X(F,,F,)>] exp{< [xE,.5)
- <x<32,§1)>]2>/2}exp{<[X(?a,?s)
- <X(?2,?3)>]2>/2}
Substituting Eq (6I) into Eq (9I) yields
<exp [X(r2.r1) + X(rz,ra)]> =
exp(-ZV,'f)exp{[<X2(?2.'i~1)>- 12]/2}

x exp{[<x2(§2,?3)> - 12]/2}

(s1)

(101)

since @7 = <x2(F',F)> - #2 , Eq (10I) is simplified

< exp [X(Fz.i‘l) + X(Fa.'f‘a)]> =

exp{- [ex?F,, 5> + <X3(F,, 5> - 212]/2}

Equation (11I) is reduced further to

88
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<exp [X(F,,7)) + X(F,,Fp)]> =

Now, the log~amplitude structure function is defined as

(Ref 4:1374)
D (5'.5) = <[X(F5' , T+F) - X(F,D)]%> (131)

Using Eq (13I) in Eq (12I) where ©p' =0 and

P = 51—53 gives

<exp [X(F,,F)) + X(F,,75)]> = exp[-Dy(|FymFy)) /2]
(141)

The second average on the right side of Eq (5I) can be

expressed as
exp[3 <O (F,,F)> - 1< P(F,,F,)>]

x exp{-<[¢><r~2.r~1) - <¢<r~2.r~1>>]2>/2}

X exp{-<[¢(?2.?3) -< ¢(?2.?'3) >]2>/2} (15I)

R o I




Substituting Eq (7I) into Eq (15I) gives
<exp[3(F,,7) - 10G,.5)]> -

exp{- [<d)2(?-2',?1)> + <(b2(?-2,§3)>]/2} (161)
since ()(F',F) is zero-mean, Eq (16I) is simplified to
<exp[1 (5,5 - 3 PF,,59]> =

exp{-<[¢<;~2,r~1> - ¢><;2,r-3)]2>/2} (171)

Now, the phase structure function is defined as

(Ref 4:1374)
0p(5.5) = <[PE+5 , F4B) - PELP]P> e

Using Eq (18I) in Eq (17I) where p' =0 and

p = rl-rs yields

<exp[J 4)(?2.?'1) -J d)(32.53)]> = exp [—D¢(|?-1-?~3')/2]
(191)

Substituting Eqs (14I) and (19I) into Eq (5I) gives 4
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exp(Jk|?3'2/2Z)<:$CMF(?3):> =

(/N z)2§[1exp(jkl;ll 2/22)EI(?‘1)exp[-D(l?l-?sl) /2]

x Rfexp[-jz Tr(?l-f‘a).'f'z/)\z]d'r"a d?l (201)
2

where D(|;17§3|) = Dx(|§1—53|) + D¢(|51—53|) is the
spherical wave structure function and where the wave number
k in the inner integral is replaced by 2TT/)\. Note that the
inner integral of Eq (20I) is the two-dimensional spatial
Fourier transform of aperture R,, where (;1—;3)/A52 =T

is a two-~dimensional spatial frequency vector. Since R2 is
a circular aperture of radius d2/2, the inner integral is

actually a Fourier-Bessel transform of circ(2'52|/d2) where

1

|F,] < a,/2
circ(elial/dz) =

0 otherwise (211)

we

From a table of Fourier-Bessel transforms, the transform

of Eq (21I) is
B [circ(a|;2 |/d2)] = dyNad (TT[F-Fg|a,/ N2)/2|F -7, |
(221)

Replacing the inner integral of Eq (2CI) with Eq (22I)

yields Eq (54):
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exp (k| 75| 2/22)< By (F,)> =
(d2/2)\z)}‘!exp(jkl?ll2/22)EI(?‘1)exp[-D(l?l-—'r"sl)/2]
1
x Jl(1r|;1-i:3|.d2/)\z)/<1/|;1-33|)d‘51 (54)

If the quadratic phase factors in Eq (55) are ignored,
A -
then the CMF Receiver average image field, <:ECMF(r3):>, is
obtained by convolving the object field, EI(Fl), with the

following CMF Receiver average impulse response <:hCMF(?):> :

<hgup(P)> = dgexP['D(Ifl)/Z]Jl(TFIFIdZ/Az)/z)\z T
(56)

The average CTF, < H., .(f)>, of the CMF Receiver is

CMF
obtained by taking the Fourier transform of Eq (56):

4+ o0

<Hgp(F)> = (d2/2)\z)fexp[-D('f‘l)/Z]Jl(Trlf'ldz/}\z)
- 00

x exp(-32TT|E| |2 (2/|F])aF (231)
Let x = |F]d,/2Nz  and |2¢] - |2{2Xz/a, so that
Eq (23I) becomes
<+ OO

<Hgup(H> = (d2/2)\z)fexp[-D(XZ)\z/da)/zlJl(zTrx)
- 00

x exp(—jZTT'f'lx)(l/x)dx (241)
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Expressing the argument of the spherical wave structure

function in terms of D the free-space DOF for a circularly-

fo?
apertured object, yields

<Hgp(E)> = (dy/2A2) :::[-D(xﬁdl/z'\‘/?f—o)/z]Jl(zT(x)
x exp(-32 TT| %'} x) (1/x)ax (25I)

where
Dpo = (TTd,d,/4N2)° (29)

Using a table of Fourier-Bessel transforms (Ref 11:145),
Eq (251) is simplified to Eq (58):

G o0

<Hgp(T)> =2TT exp[-D(xTrdl/Z'\/Dfo)/Z]Jl(zTrx)
©

X JO(ZTTIf'Ix)dx (58)
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Appendix J - Average I!NSE of the Image Field of the

Channel-ilatched Filter Receiver

This appendix derives the expression for the average
IMSE of the image field generated by the ClF Receiver, when
propagation is through the turbulent atmosphere and the addi-
tive background noise is zero-mean, spatially white noise.
Another average IISE expression is derived for the same con-
ditions in conjunction with isoplanatism. For the background
noise described above, it is shown that the average IMSE for
the joint conditions of isoplanatism and propagation through
the turbulent atmosphere is the same as the average IISE for

free-~space propagation. The average IMSE of the image field

& generated by the CHF Receiver is
<1 f [ 7 £, (F.)]%>ad7 (59)
MSE > = 2 < E(rs) - ECMF(ra)] >dr3 9
3

where E(Ps) is the field for free-space propagation and is

expressed as

- - - - * o - - -
E(ry) = Rfﬁfzx(rl)hb*s(rz’rl)hps (ry,r3)er; dr,
2Ry

+ RfEN(Fg)hFS (?2,53)d'{~2 (1J)
2

A -
Using Egqs (23), (51) and (52), the image field ECMF(rS)

generated by the CMF Receiver is expressed as

94

e ——




i
s
i
¥
t
v
i

S | A
Eeup(rs) = 24 Ep(rydh,y (ry,rydh,, (r,,r5)dr, dr,
o’ ‘

- * o o -
+ ﬁ[EN(ra)hzl (rz,rs)dr2 (2J3)
2 |

In Egs (1J) and (2J), E (F ) is an unknown but non-
random object field in aperture Rl of Figure 10, E (r ) is 1
a zero-mean, spatially white noise field representing addi- |
tive background noise, h21(§',?) is the general impulse re-

sponse, and hFS(F',F) is the free-space impulse response

defined by Eq (47). Substituting Eqs (1J) and (2J) into

Eq (59) and expanding yields

<IMSE> = fffff}: (u)EI (m)h S(w‘r,ﬁ)hFS*(ﬁ,ﬁ) |

3 2 2 1 1
|
* o - -y = e e e -
hFS (v,r3)hFS(n,r3)du dm dv dn dr3 |
- * _ - :
- 2Re jffjfE (u)EI (m)th(v’u)hFS (v,r;) i
3 2 2 1 1

x & h,," (A,f)h,, (§,F,)>>dd dii dV dh dF,
~ 2Re ffffz (W)<E, *(®m)>h rs(V,1)
RaRaRoRy
hgs (¥,F5)<h,, (R,F,)>dl oV dA dF, :

fjfffz (BE; (B)<hy, (7,@)hy, " (,)

RaRRoR Ry
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* L - - U eam ew  em em e
X hyy (v,rs)hzl(n,r3)2>du dm dv dn dr,

ffffE (D<ES (R)><h,, (7,8

3 2 2 1

™

* _ - - - e = e -
h,y (v,r3)h21(n,r3):>du dm dv dn dr

ffng(wE(m><hl(VF)

3 2 2

3

+

b

h21(n,r3)>dv dn dry ; U, m€R, Vv, n€R

(3J)

The third and fifth terms of Eq (3J) are zero because
the noise field is zero-mean. Since the additive background

noise is spatially white noise
<E (DE,(@> = v dG-R) (50)

For propagation through the turbulent atmosphere, the
general impulse response, hzl(F',F), of Eq (3J) is replaced
by the turbulent impulse response, hTB(F',F). The turbulent

impulse response 1is written as

heg(FHF) = hpg(F,Blexp [X(F',B) + 30G, 5] (4n)

Substituting Eqs (50) and (4J) into Eq (3J) yields

2




< IMSE> = ffjffﬁ: H (g (7,8 hgg " (7,7)
24444 I m Fsvu FS(nm

3272711

x hgg” (¥, F4)hpg (B, F)<{1 - exp [ X(7,)
| x exp [X(F,Fy)]exp[-3 0GR + 30 R,F,))]
+ exp [X(3,8) + X(%,5y)]exo[30(7,D)]
x exp[-3 O(3,5)] + exo [X(7,8) + X(E,M)]
x exp[ X(R,F5) + X(¥,%5)]exp [3 9(7,0))

x exp[-3 (F,5)]exo[-3 P(R,7) - 30, Fy)] 0>

x di dii d¥ dfi dF, + [No/()\ Z)2]

x ff<exp[2X(ﬁ)]>d?‘2 dr,
R.R
32
; u, ﬁenl vV, ﬁena
(5J)

where the second term of Eq (3J) is expanded using the iden-
tity, Re(w) = (w+w*)/2 , and a change of variables

(Qe+>m and Ve+n) is performed on the w term of the expansion.,
Equation (5J), specifically the second term, can be simplified

even more, Using Eqs (6I) and (91), it can be shown that
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<exp[2 X(M)]> =1 (67)

Substituting Eq (6J) into Eq (5J) yields

; < IMSE > = ff_/ffE (B)E, " (A)h, . (F,8)h . (f,)
2 4 1(WEs (Mhp(V,u)heg (n,m

RgR RoR Ry

% hpg (%,F5)hpg (B, F,)<{1 - exp [X(5,7)]

x exp [X(R,F5)] exp[-3 P(R,7) + 3 O, Fy)]

s exp[X (3,0 + X@,7y]exp[3 07, 0)]

x exp[-3 P(F,F)] + exp[X(F,D) +X(&,)

x exp [X(R,F5) + X(7,F5)]exp [i (7, 8)]

x exp [-1 (7,5,)] exp[-3 P(F,7) + j¢(ﬁ,§3)]}>
x du dm dV dn dr; + [No/(>\z)2]

x f[aﬁid;z dr, ; u, m€R; V, nE€R, | (7J)

Still more simplification is possible. Since R2 is a

circular aperture of radius d2/2 and R3 is a circular aper-

ture of radius d1/2 (same radius as Rl)’ Eq (7J) reduces to




, < IMSE > = IIIIIEI(G)E (Ao (F,0)hpe (7,7)
I Fs\VsWhpg (1,
RR R R R,
X hps" (V,F5)hpg (7,F5) < {1 - exp [X(5,7))
X exp [X(n,rS)] exp[-j ¢(ﬁ,r?|) + ¢(ﬁ,33)]
+ exp [X(5,0) + X(7,%)] exp [10 (7, 0]

x exp[-10(7,75)] + exp [X(F,®) + X,

x exp [X(7,F5) + X(%,55)] exo[5 §(7,0)]

x exp[-3 0 (7,7;)] exo[-3 B (5,7 + 3P R,

x du dm dv dn dr3 + Nono

; u, mER, Vv, EGRZ (60)
where

Dy =[7Td1d2/4)\z]2 (29)

Equation (60) is the average IMSE of the image field
generated by the CMF Receiver when propagation is through
the turbulent atmosphere and the additive background noise
is zero-mean, spatially white noise. If the object field

is also isoplantic, then the first term of Eq (60) becomes
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zero, For isoplanatic object fields, X(r',r)—=X(r') and

¢(.?',§)-—>—¢(F'), and Eq (60) becomes
<IMSE> = fffffE (WE; (Mhpo (7,0 h o (7,7)
I I Fs*"? FS '
R3R2R2R1R1

x hFS*(V,?S)hFS(ﬁ,Fa) 1 - <:exp[24XKﬁ)]:>

+

- <exp[2X(‘7)]’> <exp[2 X)) + 2X(\7)]>

X du dm dv dn dr3 + Nono

[t
3
M
jos]
[
<l
]|
m
23]
N
~
[os]
(2N
~

Using Eqs (6I) and (9I), it can be shown that
<exp[2 X(R) + 2X(@)]> =1 (99)

Vhen Egs (6J) and (9J) are substituted into Eq (8J),

the first term becomes zero as alleged and Eq (8J) reduces

to Eq (61):
< IMSE > = N Do (61)

Equation (61) is based on the conditions of isoplanatism,

propagation through the turbulent atmosphere, and zero-mean,
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spatially white noise, The same result applies however for
the conditions of free-space propagation and zero-mean, spa-
tially white noise. This is shown by letting X(r',r) and
¢(F',F) in Eq (5J) equal zero. The first term of Eq (5J)

becomes zero and Eq (5J) reduces to
Az)? T, dF
< IMSE> = No/( z) dr, dr, (10J)
RaR,

Since R, 1s a circular aperture of radius d2/2 and R,

is a circular aperture of radius d1/2 (same radius as Rl)’

Eq (10J) is equivalent to

< IMSE> = NDso (61)

where

Doy = [Trd1d2/4>\z]2 (29)
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Appendix K - Sufficient Condition for Minimizing the Average

INSE of the Image Field of the Multiplicative Phase Receiver

This appendix derives Eq (64). Eq (64) is the sufficient
condition that the optimum multiplicative phase of the MP

Receiver must satisfy for the average IMSE of the receiver
image field to be minimized. The average IMSE of the image

field generated bv the MP Recgeiver is

- A - 2 -
< IMSE > = E[< [E(ra) - EMP(rB)] >dr3 (63)
3
where E(Ea) is the field for free-space propagation and is

expressed as

- - - - * - - -
E(r3) = !JEI(rl)th(rz’rl)hFS (r2,r3) dr, dr,
21

- * o o .
+ JEN(rZ)hFS (1-2,1*3)dr‘2 (1K)
2

. A -
Using Eqs (23), (51) and (53), the image field EMP(rS)

generated by the MP Receiver is expressed as

A
Tup(Fa) = J!EI(;l)exp[j¢(;2)] hay(TasTy)
2™

.___-f_
x hpg (rz,rs)dr1 dr, + J EN(PZ)
2

A .- - .
x exp[J ¢(1~2)]hFS (1:'2,r3)c1r2 (2K)
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where the optimum multiplicative phase ¢o(52) has been re-
placed by an optimum phase estimate 6(52). In Eqs (1K) and
(2K), EI(FI) is an unknown but nonrandom object field in
aperture R1 of Figure 10, EN(?z) is a zero-mean, spatially
white noise field representing additive background noise,
hzl(?',?) is the general impulse response, and hFS( ',r) is
the free-space impulse response defined by Eq (47). Substi-

tuting Eqs (1K) and (2K) into Eq (63) and expanding yields

<IMSE> = fffff}z (WE; (m)hFS(v u)hFS (n,m)

3 2 2 1 1
hpg (¥,F4)hpg (R, F,)dl dff a¥ A dF,
o[ [ [ ooy

2 2 1 1

x npg(RyFy)<exp[-3 D] n,, " (7 >

x du dm dv dn d?s

- ffffE (u)<E (n)><exp[ j¢(n)]>
3 2 2 Ry
x hpo(¥,@)hpg" (3,7, hpg(R,T5)d0 d¥ df dF,

3 2 2 1 1

A . |
< ex[30® - 3 Py, 00y, " R0 '

»
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x du dm dv dn d?s

fffﬁﬂw<%(m>%SWr)

3 2 2 1

?.
CI
V

th(ﬁ.53)<exp[ (D(V) - J¢(n)]

»

du dv dn dr

»

3

fff<E (9)Ey (R)>hpg (7,F4)hpg(R,Fy)
3 2 2

+

»

A A
<exp[30 () - 3P )] >aT af a7,

; u, m€R, Vv, n€R (3K)

1 2

The third and fifth terms of Eq (3K) are zero because
the noise field is zero-mean, Now let the optimum phase

A
estimate, ¢(52) be written as
A .
7 = BT+ €QF,) (4K)

where ¢°(?2) is the optimum multiplicative phase and €¢€(?2)
is the phase error of the optimum phase estimate., Substitut-

ing Eq (4K) into Eq (3K) yields

<IMSE > = ff[ffz:l(a)zl'(ﬁ)n (v,0)h, (7,m)
FS‘ "’ FS ’
RaRRR Ry
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* _ = m = e e
X hpg (v,ra)hFS(n,ra)du dm dv dn dr3

- fffff H(®E (Ahyg (,8)hyg " (3,F,)

32211

x hFS(ﬁ,Fé)exp [—j€¢e(ﬁ)]< exp[-j (bo(ﬁ)] l

*__>_____
b h21 (n,m) du dm dv dn dr3

-IIIIII(MEmmHW%m%ga%)

32211

x hpg' (7,7 exn[3 QM) < exo[1 P, () ]n,, F,7) >

X du dm dv dn dEs

+ fffffz (DE; (Mg (F,F4)hpo(R,T,)

32211

x exp[I€ QW - se@®|<exp[50.® - 10 )

P— ¥ e - - - - - -
x h21(v,u)h?_,1 (n,m) > du dv dm dn drg

+ fff< Ey(MEy () >hp" (7,7)hp(R,F,)
3 2 2

x exp[JEQD) - s EQ@m]<exe[1 0, - 3P (R)]>

x dv dn dFa ; u, ﬁeﬂl v, E€R2 (5K)
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where the second term of Eq (3K) is expanded using the iden-
tity Re(w) = (w+.r /2 . To obtain a condition for ¢o(?‘2)
such that the average IMNSE is minimized, take the derivative
of Eq (5K) with respect to €, let € =0 , and set the

result equal to zero:

d<usesde| - fspw| [ e
<mse>de| XEY JJ ) ) e@e @

~

- - *
th(v,u)hFS (v, )hFS(n’rS)

»

<exp[-3 P, (M)]ny, " (R, 7)>dT di dF dF, | df

fj b | - ffff N(DEL(R)hgg (7,3)
R2

3 2 1 1

+

x hyg (¥, F0hys” (7, Fy)<exp[3 B, (R)] n,y, (7,7) >

x du dm dv dr dn

+ fj (n) ffff}: (Q)E; (m)th(vr)

3 2 1 1

x hFS‘('ﬁ.?-a)<exp[-j 0, = 30, (®]n,y, (7,5

* _ - - - e -
x hy, (v,m)>du dm dv drg |dn

+ fj Q(ﬁ) IIIIE (u)EI (m)th (v r )
R
2

3 2 1 1
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x hpg(RuFg)<exp[5 O (%) - 3@ (@)]n,, (7,0

* e - - e e - -
X hyy (n,m)>du dm dv dry | dn

,[' (n) ff<E\*(_)E (n)>h_..(v,7.,)
+ Rz‘]qbe” R.R, N ‘VEyin Fs'VsT3

X hFS*(ﬁ,’r‘s)<exp[-j d)o(x"z) + j¢o(ﬁ)]>d\7 d§3 dn

f‘¢('ﬁ) - ff<E (VE, (F)>h.. (3,7.)
+ RzJ € R R, N V/Ey In Fs ‘ViT3

x heg(8,7)<exp [3 O (7) - 3@ ()] >a% aF, ar = o

; u, r'rieRl v, 5€R2 (6K)

where the fourth term of Eq (S5K) is expanded to give the
third and fourth terms of Eq (6K), and the fifth term of
Eq (5K) is expanded to give the fifth and sixth terms of
Eq (6K). Equation (6K) is true if the sum of the terms in
brackets is equal to zero. Setting the sum equal to zero
and performing a change of variables (Q-sm) in the third

term of the sum yields

ffffz (DE; (Rho(F,8) e (3,520 Mo (AL F)
I I FS*"? FS 3°FS* "*"3
R3R2R1R1

x <exp[—J ¢O(E)]h21*(ﬁ,ﬁ)>dﬁ dm dv d?a

((
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- ffffz HRE (Mg (%, @) h, (7,5 )b (RLF. )
I I FS ! FS 37Fs "3
RaloRy Ry

exp[3 @ ()] n,, (7,7)>a a7 a5 a7,
fffp @EL (RN, (3,5 0h " (5.F.) {
R2R1R1 I I FS 3'°°Fs 3

x <exp[-—j ¢o(\7) + J ¢0(ﬁ)]h21*(v,ﬁ)h21(ﬁ,ﬁ)>

du dm dv dp

»

3

t [ [frsmcomy com o
‘ (WEL (m)h.. (V,F.)h_.(R,F.)
{28 1 I FS 3’"'Fs 3

3727171

x <exo[i P (¥ - 30, @]y, 5,00, " F,7) >

du dm &V dr

»

3

R.R
32
x <exp[-3¢ (%) + 19,®]>a5 aF,

- 1?{/’ﬁ/'< Ey(DEy (R)Shpo ™ (7,5 npg (7, F,)
32

x <exp[j¢o(\7) ~J ¢O(ﬁ)]>d\7 dr, = 0
(7K)
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Note that the first and second terms, third and fourth
terms, and fifth and sixth terms of Eq (7K) are conjugate
pairs. Therefore, by using the identity (w—w*) = 2iIm(w) ,

Eq (7K) is simplified to

Im fff.[EI(GM:I*(ﬁ)th*(x‘r.Fs)th(ﬁ.53)<exp[-3 ¢, 7))

RgR R Ry

»

hzl*(ﬁ,ﬁ)[hFS(i_r,a) - exp [J ¢o(\7)]h21(\7,a)]>
x di dm dv dr

3

- Im é[§[<:EN(V)EN*(H):>hFS*(;.?3)th(ﬁ,?3)
32

Lo
]

<exp[i P (V) - 1P ()]>av aFyp= 0

c1
31
(0}
oo
3
o
m
2}

(8K)

Since the additive background noise is spatially white

noise
- * . - -
<E (9)E,"(F)> = N (F-R) (50)
Substituting Eq (50) into Eq (8K) gives

afaR1Ry
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x <exp[-3 O ()] nal*(a,a)[nFS(v,a) - exp (30, (%)]

x h21(‘,ﬁ)]:>dﬁ dm dv d?s

2 - - - - -
- Im [No/()\z) ] fdr2 =0 ; u, m€R; Vv, nER,

R (9K)

The second term on the left side of Eq (9K) is zero
because the quantity in { } is real, Therefore, Eq (9K)

is simplified to

Im fffm (B)E, (Mh . (¥, ) (R, Fq)
I I FS ' 3FSY "3
RgR,R Ry

- * - o - - ) -
x <exp[-3 @, (@)]n,, (n,m)[th(V.u) - exp[i0 (9]
x h21(v,u)]> du dm dv dr; ¢ =0 ; u, m€R; Vv, ne€R,
(10K)
For propagation through the turbulent atmosphere, the
general impulse response, h21(F',F), of Eq (10K) is replaced
by the turbulent impulse response, hTB(?',F). The turbulent

impulse response is written as

Ngp(T',F) = hpo(T',T)exp [X(F',F) + J¢('z‘~',§)] (11K)

Substituting Eq (11K) into Eq (10K) yields Eq (64):




Im ffffp: (WE- (M) e (¥,8)hee (R,A)hee (¥,F.)
R R,R R, 1 I FS FS Fs VT3

% hpo (8,75)<exp [X(5, ] exn[-5 O E,5) - 30,(7)]

¥ [1 - exp [X(?,G)]éxp [jd)(\-r,ﬁ) + j¢°(§)]]>

x du dm dv df~3 =0 ; u, ﬁeﬁl V, EeR2 (64)




Appendix L - Minimum Average IMSE of the Image Field

of the Multiplicative Phase Receiver

This appendix derives Eq (65), which is the expression
for the minimum average IMSE of the image field generated by
the MP Receiver, The average IMSE of the image field gener-

ated by the MP Receiver is

<IMSE> = f ff]f I(u)EI (m)hpg (v, u)th*(ﬁ,rT\)

2 3 2 l 1
x hpg' (V,F5)hp (7,F,)d0 dfi o dF, | i
- f f_[jfp: (B)E; (M hpg (¥, D g (7,7)
3 2 1 1

X th(ﬁ,§3)<exp[ (p (n)]h 1 (n m)

x du dm dv d?-s dn

-f ffff E; (E(R)hgg (¥,8)hpg(¥,F3)

2 3 2 1 1

x hFS'(ﬁ.Fa)< exp [J d)o(ﬁ)] h,, (n,m) >

x du dm dv d'z'~3 dn

+ !fff I(U)EI (m)hFS (v,r )hFS(n 7j)

2 1 1




| | x <exp[30,(F) - 30, (®)]n,, F,5n,, " (@,5>

x du dm dv dr3 dn + Nono

=1
=1
)
o
<
3
M
o

Equation (1L) is obtained from Eq (3K) in the following
way. The third and fifth terms of Eq (3K) are zero because
the noise field is zero-mean. The second term of Eq (3K) is

expanded using the identity Re(w) = (w+w*)/2 . The last

term of Eq (3K) becomes Nonobecause the noise field is spa-
tially white noise. This is shown in Appendix J. The opti-
mum multiplicative phase estimate a(f-z) is replaced by the
optimum multiplicative phase $o(52). Finally, the integral
order is rearranged to facilitate a forthcoming substitution.
The optimum multiplicative phase which minimizes the
average IMSE given by Eq (1L) must satisfy the sufficient

condition derived in Appendix K:

In ff]f%wm;mmmﬁmgm“mjg
RyR Ry Ry

x < exp [—J ¢°(ﬁ)]h21'(ﬁ,ﬁ)[th(\7,ﬁ) - exp[J ¢°(w7)]

x h21(\7,ﬁ)] > da dm dv dFa =0 ; u, fﬁGRl v, ﬁeaa

(10K)




R

In its present form, Eq (10K) cannot be easily substi-

tuted into Eq (1L). However, using the identity

Im{w)

form

yields

= —i(w—w*)/Z , Eq (10K) is put in the more useful

fff EL(U)E (m)h (V r Yh..(n,r,)
I I FS FS 3
R3R2R1

1
x < exp [j ¢°(v) - j@ (n)]h21(v u)h21 (n,m)>dd dm dv dr3
ffffE (u)EI (R)hpg(V, u)hFs (V,T3)hps(n,Ty)
3 2 1 1
<exp[-3 P ()] by, (R,F)>al dfi 6F dF,

ffff (U)E (m)th (V u)hFS( ) FS (n,rs)

3 2 Ry 1

o

"

<exp[39 (@], (7,7)>dd dfi o¥ dFy

jj[f "(DE (m)th(v Ty)hpg * (R, rs)

3 2 1 1

+

o

<exp[-30,(® + 1O (@)]ny, 7,8y FR>
x dU dm dv dF¥, ; U, meRrR, v, neER, - (2L)

Substituting Eq (2L) into the fourth term of Eq (1L)

NLse P Daiw
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<IMSE> = ff ffE’E"‘h",'h n,r
24444 EWE (mhpg (V,T3)hpg(R,73)
2Ry Ry
[

3
x hy (3,0 + <exp[10,(9) - 30, (8)]ny, (7,5

o

§(F,0ngs " (7,7) - 2 " (R,R<exn[1 O, (D]

+ ND

¥ e - - e e e -
x hyy (n,m):>] du dm dv dn dr oPro

3

;G,ﬁeal v, Eena (3L)

where a change of variables (U<—»m and ve+n) was performed

. on the third term of Eq (1L) and the third term on the right
: side of Eq (2L). For propagation through the turbulent atmos-
‘ phere, the general impulse response, hzl(F',?), of Eq (3L) is

replaced by the turbulent impulse response, hTB(F',F). The

turbulent impulse response is written as
hpg(F',F) = ho(F,Plexp [ X, + 310G, D] (a0

Substituting Eq (4L) into Eq (3L) yields Eq (65):
S - - . o -
<IMSE > = fffffE (W)E; (m)h (V,u)h_. (n,m)
I I FS FS
RaRyRR Ry

hFS‘(‘-";3)hFS(B’;3) [ l1-2L exP[X(;oﬁ)]
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x exp[10(F,8) + 3P, (D]> + <exo[X(7,1)]

x exp [X(R,®)] exo[10 7.0 + 30, (%) - 1O GED)]

X exp[—:](bc;(ﬁ)]>] 4l df d¥ dfl dF
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Appe.idix M - Average Coherent Transfer Function

of the Multiplicative Phase Receiver

This appendix derives Eq (66), which is the expression
for the average CTF of the MP Receiver when it is operating
so as to cancel turbulence-induced phase fluctuations. The

image field generated by the MP Receiver is

S By = J 2o s 0ol 5, R

EMP(rs) = 2 E.(re)exp J¢o(r2) th (r2,r3)dr2 (53)
2

where hFS(Fz,?s) is the free-space impulse response defined

by Eq (47):

J

hFS(FZ,F3) = exp[jk(z + |§2-?3|2/2z]/j)sz (47)

The field E(?z) of Eq (53) is the input to the MP Re-

ceiver. By Eq (51) it is
E(r2) = Eo(rz) + EN(rz) (51)

where EO(FZ) is the output field of the propagation channel
and EN(FZ) is a zero-mean, spatially white noise field. For
propagation through the turbulent atmosphere, the field EO(F

18 expressed as

Eo(?~2) = RfEI(Fl)hTB(FZ,Fl)d'f'l ‘ (1M)
1 .
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where EI(Fl) is an unknown but nonrandom object field in
aperture R, of Figure 10 and where hTB(FZ,Fl) is the turbulent

impulse response defined by Eq (49):
hTB(?Z,?l) = exp[jk(z + |§2—?~1|2/22)]/J’>\z
x exp [X(F,.F,) + § O(F,.F,)] (49)
Substituting Eqs (51) and (1) into Eq (53) yields
Bp(Fy) = Rf!EI(;&)exp ELRERI ENEREY

271

- o - - -
x hFS (r2,r3)dr1 dr2 + grEN(rz)
2

X exp [j ¢o(52)]th*(?2,?3)d?~2 (2M)

Since X(r',r) and d)('f",?) are random variables, the
turbulent impulse response given by Eq (49) is a random func-
tion. Therefore, the image field given by Eq (2M) is also

random. On the average however the field is:

P e b (s -
<Eyp(r3)> = R2RlE:I(r:|_)<exp[J ¢o(r2)]hTB(r2,r1)>

*(#.,F.)dF, dF (3M
x hpg (r2,r3)dr1 dr, )

where the second term in Eq (3M) is dropped because the noise
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field is zero-mean, Substituting Eqs (47) and (49) into

Eq (3M) yields

exp(Jk|T4]2/22)< B (F) > = (1/N2)? jexp(jk|;1|2/2z)
. R
1

x Eg(F;) J exp [~k (F,-Fy) Fy/z)< exp [X(F,,F;)]>
2
x < exp [J' é(?‘z.?‘l) - J¢°(F2)]>d52 d?-l (4M)

where the average of the right side of Eq (4M) has been
written as two separate averages of X{(r',r) and d)(f*',?)
since these are independent random variables (Ref 4:1374).
Furthermore, X(r',r) and ¢(F',F) are Gaussian random varia-
bles (Ref 4:1374) with the statistics given by Egqs (6I), (7I)

and (8I). Using Eqs (6I) and (9I) it can be shown that

< exp [X(Fa,?‘l)]> = exp(-vf/Z) (5M)

When the MP Receiver is operating so as to cancel turbu-

lence-induced phase fluctuations, then ¢°(?‘2) = —¢(52) ,

or equivalently, @0(52) = -¢(52,0) e Substituting this

choice of ¢°(52) and Eq (5M) into Eq (4M) yields

exp(Jk|§3|2/2z)<§MP(;3)> - (1/)\2)2exp(-v’-‘2/2)
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- 12 - - -y =
x fexp(Jk r,|“/22)E (v )fe p|-jk(r,-r.).r,/
R, |7, 11 R, x [ JRET=Tg) e T z]

x <exp[:} (D(I-‘z';‘l) - j¢(§2,o)]>df-2 dr (6M)

1

Following the procedure used in Appendix I, the spatial

average on the right side of Eq (6M) is written as
<exp[a‘ (D(Fz,‘x‘l) - J(D(Fz,o)]> = exp[-D¢(O,f‘1)/2] (7M)

where D¢(0,51) is the phase structure function defined by

Eq (18I). Substituting Eq (7M) into Eq (6M) yields
1= 12 o JR - 2 [ 2
exp(Jk|r3| /2Z)<EMP(r3)> = (1/Nz)%exp -V /2]

x f!’exp(jk,?‘ll2/22)15-.[('1"'1)exp [—D¢(O,51)/2]
1

x J exp[-32 TT(E,-F,) .5,/ Nz [aF, dF, (8M)
2

where the wave number k in the inner integral is replaced by
27T7>\ . It is shown in Appendix I that the inner integral

of Eq (8M) can be written as

Jexp [-;12 Tr(il-?a).'f'Z/)\z]d?-z = da)\le(ﬂ'lil-—?ale/)\z)
2

x (2/|F)-T4)) (om)
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Substituting Eq (9M) into Eq (8M) yields Eq (66):
- 2 Ao _ \ ‘ 2
exp(Jk|T4|"/22)<Ey,(F3)> = (dy/2Az)exp(-vy; /2)
- |2 - -
x fexp(.jk,rll /az)EI(rl)exp[-D¢(O,r1)/2]
R
1

x 3, (TT|7y=F5)dy/ N2) (17|75, DaF,
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Appendix N -~ Minimum Average IlSEs of Multiplicative

Phase Receiver Image Fields for Point

Sources and Incoherent Object Fields

This appendix shows that for a point source field the
sufficient condition for minimizing the average IMSE of the
image field gererated by the MP Receiver is satisfied when
the optimum multiplicative phase is chosen so as to cancel
the turbulence-induced phase fluctuations. This statement
is qualified by saying that propagation is through the tur-
bulent atmosphere and the additive background noise is zero-
mean, spatially white noise. For the above choice of the
optimum phase, the minimum average IINSE of the image field
of a point source field is derived. The result 1s Eq (70).
The process of showing that the sufficient condition is sat-
isfied and then calculating the minimum average IMSE of the
image field, is repeated for an isoplanatic, incoherent ob-
ject field with a real and even object intensity distribution
function. The minimum average IlNSE expression for this case
is Eq (71).

When propec~ation is through the turbulent atmosphere
and the additive background noise is zero-mean, spatially
white noise, the sufficient condition that the optimum multi-

plicative phase must satisfy is

Im ffffz (BE; (Rhpg (7,8 g (R,F)h g (¥,F,)
R3R2R1R1 I I FS FS FS 3
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X hpg (8,7 )<exp [X(F,m)] exo[-3 0 (5,7 - 5@, (7)]
x [1 - exp [X(\-r,ﬁ)] exp[j¢(x‘r,ﬁ) + j¢o(\-r)]]>

x du dm dv d?a =0 ; u, ﬁenl v, HGRZ (64)

Equation (64) is derived in Appendix K. For a point
source field with a complex amplitude Eo’ the term

EI(G)EI*(fﬁ) in Eq (64) is written as
EI(G)EI*(E) = EOEO* J(a) J*(a) (1N)

Substituting Eq (1N) into Eq (64) and letting

O.(F,) = -P(F,) gives

Im (1/}\z)2E°zo*Jﬁ[nFs‘(v,;a)hFS(ﬁ,;s)[<exp [x@®]>
32

- < exp [X(ﬁ) +X(\'r)]>]d5 drg e =0 ; V, Een2

(2N)
Using Eqs (6I) and (9I) it can be shown that
<exp [X(D]> = exp [-gP/2] ()
- - 2
< exp [X(n) + X(V)]> = exp [-v;‘ ] (4N)
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Substituting Eqs (3N) and (4N) into Eq (2N) and using

Eq (47) to expand the free-space impulse responses yields

Im (1/Xz)4E°E°*[exp(-v;‘2/2) - exp(-V:)] !Rf
. 23

x exp[—.j2 ﬂ(ﬁ-\?).?‘s/)\ z]d?-3 dv » = O ; V, n€R,

where the order of integration is switched and the wave
number k in the impulse response is replaced by 2Tr/>\ . Note
that the inner integral of Eq (S5N) is a two-dimensional spa-
tial Fourier transform of aperture R3 where

(5-3)/)\z =T is a two-dimenéional spatial frequency vector.

Since R, 1s a circular aperture of radius d1/2 (same as the

3
radius of Rl)’ the inner integral is actually a Fourier-Bessel

transform of circ(2|r3|/d1) where

1 |I~3| <q,/2

circ(zlral/dl) =
0 ; otherwise {eN)

From a table of Fourier-Bessel transforms, the transform

of Eq (6N) is
Bletre(2|F4)/ap)] = oy N23 (T[5-5]a;/ N 2)/2[5-3] (7m)

Replacing the inner integral of Eq (SN) with Eq (7N)
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yields

Im (1/>\z>4z°so*[exp<-vf/2) - exp(- ) ](alxzm

s x E_[.11(1'('|ﬁ-x7|dl/)\z)(l/l'r'x-Gl)c‘l'x} =0 ; V, n€R,
2
Since Jl(x) and all the other terms on the left side of
Eq (9M) are real, the left side is zero and the sufficient
condition is satisfied. Therefore, for a point source field
and the conditions stated at the beginning of this appendix,
Eq (64) is true when ¢°(52) = -¢(52) . For this choice

of ¢°(?‘2) and the same conditions, the minimum average IMSE

of the image of a point source field with a complex amplitude

E, is, from Eq (65)

<IMSE> = (1/A z)anEo*f thS*(\"r.FS)hFS(E.?:;)
R3RaRp

x [1 - 2<exp [X(V)]> + <exp [X(\'r) + X(E)]>]
x dv dn d?a + NJD R ﬁeaz (9N)

fo

Substituting Eqs (3N) and (4N) into Eq (9N) and using

Eq (47) to expand the free~space impulse responses yields

<IMSE> = (1/A2)%EE." [1 - 2 exp(-y2/2) + exp<-v,f)]
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x ffexp[—.jzm-f-al)\ z).Tr]d\-rf
R3Ry

Ry

x exr.>[-J'2 TT(53/>\ z).ﬁ]dﬁ dr, + N.Doo

(10N)

where the wave number k in the impulse response is replaced
by 2TT/N\. Note that the second integral is a two-dimensional

spatial Fourier transform of circular aperture R, where

2
—53/);2 = «f 1is a two-dimensional spatial frequency vector.
Note that the third integral is a two-dimensional spatial
Fourier transform of the same aperture where Fsl)uz =F is
a two-dimensional spatial frequency vector. Therefore, with

the proper argument changes Eq (7N) can be used twice in

Eq (10N) to give Eq (70):
< IMSE>> = (d2/2)\z)2EoE°* [1 -2 exp(-vxa/z) + exp(-v"‘z)]

x I[Jl(ﬂd2|?3|/>\z)] 2(1/|;3,)2d53

Rj

+ NJD (70)

fo

Before the above process is repeated for an incoherent

object field, the object field is restricted to be isoplanatic.

—c ek o A

For this additional restriction, Eq (64) becomes
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Im ffff}«: (R)E; (M h.o(¥,3)h e (R,A)hoe (F,F.)
RyRoR, R I 1 FS FS MiNps (VyTy

x hFS(E,§3)<exp [X(ﬁ)]exp[—d ¢(F1) - j¢o(ﬁ)]
x [1 - exp [X()]exs [0 @) + J'¢o("">]]>

x du dm dv d?s =0 ; u, ﬁenl Vv, n€R (11N)

For an incoherent object field with real and even object
- - . _
intensity distribution function I(u), the term EI(u)EI (m)
in Eq (12M) is written as a spatial average over the object

field
<EI(G)EI*(n‘1)> = I(1Q) &a_m (12NM)

Substituting Eq (12N) into Eq (11N) and letting

¢°(;2) = -¢(f‘2) gives

Im fffl(?l)hFS(G,El)hFS'(E,El)hFS*(G,?s)hps(r’x.is)
RaR Ry

x[<exp [X(ﬁ)]> - Lexp [X(Fx) + X('\;)]>]d31 dav dFs =0

; Vv, NER, (13N)

Substituting Eqs (3N) and (4N) into Eq (13N) and using

Eq (47) to expand the free-space impulse responses yields
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Im (1/)\2)4[exp(—vf/2) - exp(-vf)] f
R, R

178

x exp|-j2 7T(r‘1-x7).?~3/)\ z]d?st(Fl)exp[-jZ Tr(\-r-ﬁ).f‘l/)\z]
R
1

x d‘fl dv p = 0O : i VvV, n€R (14N)

where the order of integration is switched and the wave number
k in the impulse response is replaced by 2TT7)\. Note that
the second integral is a two-dimensional spatial Fourier

transform of circular aperture R, where (¥v-n)/ Nz =7 is a

two-dimensional spatial frequency vector. Therefore, with

the proper argument change Eq (8M) is used in Eq (14N) to

give

Im (1/}\2)4[exp(-75‘2/2) - exp(-vf)](dzkz/z)

R,

x le(Trla-\‘rldz/}\z)(1/|ﬁ-x7|)f1(;1)
Ry

x exp[—:j? TT(G-H).?'i/)\z]d'r"l dv 0 =0 ; ¥V, NER,

(15N)

Note that the inner integral of Eq (15N) is a two-
dimensional spatial Fourier transform of the object intensity
distribution function within circular aperture Rl' Since the
function is real and even, its transform is also real. Since

Jl(x) and all other terms on the left side of Eq (15N) are
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real, the left side is zero and the sufficient condition is
satisfied. Therefore, for an isoplanatic, incoherent object
field with a real and even object intensity distribution func-
tion, and the conditions stated at the beginning of this ap-
pendix, Eq (64) is true when wo('x"z) = -¢(?2) . For

this choice of d)o('f‘a) and the same conditions, the minimum
average IMSE of the image of an isoplanatic, incoherent ob-
ject field with a real and even object intensity distribution

function I(?l) is, from Eq (65)

<IMSE> = ffffl(?- Yoo (¥,5)h o (R,Fy )N (V,F2)
AR AR L FST TS 1Prs 3

x th(ﬁ,Fs) [1 -2L exp[X(Tr)]) + <exp [X(\’r)]

X exp [X(n)]>]dr1 dv dn dr; + N D,

(16N)

Substituting Eqs (3N) and (4N) into Eq (16N) and using

Eq (47) to expand the free-space impulse responses yields
4 2 2
SIMSES = (1/Az) [1 -2 exp(-v‘x/z) + exp(-v," )]
x !!I(Fl)fexp[-JzTr(Fl-Fs).\'r/)\ z]d\-r
aly R,

x fexp[-Jzﬂ(?‘a-Fl).ﬁ/Az]dﬁ d?l d?a + N_Dgo
R
2

3 V., nER, (17N)
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where the order of integration is switched and the wave number
k in the impulse response is replaced by 27T/>\- Note that
the third integral is a two-dimensional spatial Fourier trans-

form of circular aperture R, where (51-53)/)\2 =-F is a

2
two-dimensional spatial frequency vector. Note that the

fourth integral is a two-dimensional spatial Fourier trans-
form of the same aperture where (53-51)/)\z =T is a two-
dimensional spatial frequency vector. Therefore, with the

proper argument changes Eq (7N) is used twice in Eq (17N) to

give Eq (71):
< IMSE > = (d2/2>\2)2 [1 -2 exp(—VxZ/Z’ + exp(-v,f)]
ffx‘ y[3,(TTa, |75-7, | /N )]2(1/ 77y [)°
* 44 (ry)|3,(TMdy|rg-1y 2 lrS'rl'
3"1

x dr, df; + N Do, (71)
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